

http://mature-ip.eu

D5.2
Specification of the System Architecture

(DRAFT)

Date 12. April 2009

Dissemination Level Public

Responsible Partner BOC

Editors Andrea Leutgeb

Authors Andrea Leutgeb, Robert Woitsch, Hannes
Eichner, Daniela Feldkamp, Roman Brun,
Simone Braun, Nicolas Weber, Alexander
Sandow, Tobias Nelkner, Knut Hinkelmann,
Barbara Thönssen, Bo Hu

Work Package WP5 (System Architecture, Integration and
Deployment)

MATURE http://mature-ip.eu

Continuous Social Learning in Knowledge Networks Grant No. 216356

MATURE is supported by the European Commission within the 7th Framework
Programme, Unit for Technology-Enhanced Learning
Project Officer: Martin Májek

2

DOCUMENT HISTORY

Version Date Contributor Comments

V0.1 09.12.2009 Andrea Leutgeb Initial Document

V0.2 23.01.2009 Andrea Leutgeb First Draft

V0.3 02.03.2009 Andrea Leutgeb Restructuring of Documents, Draft for Internal
Review

V0.4 09.03.2009 Andrea Leutgeb,
Wilfrid Utz, Robert
Woitsch

Daniela Feldkamp,
Roman Brun , Simone
Braun, Nicolas Weber,
Alexander Sandow,
Tobias Nelkner

Incorporated results of the Integration Meeting

V0.5 13.03.2009 Andrea Leutgeb

Knut Hinkelmann,
Barbara Thönssen,
Roman Brun,
Bo Hu

Incorporated Internal Review Results

V0.6 02.04.2009 Andrea Leutgeb,
Robert Woitsch,
Hannes Eichner

Restructuring and Improvement of Deliverable

V0.7 10.04.2009 Andrea Leutgeb Finalisation of the Deliverable

V1.0 12.04.2009 Andreas Schmidt Final editorial work

 15.04.2009 Andreas Schmidt
Pablo Franzolini

Submission to the EC

Table of Contents
1 EXECUTIVE SUMMARY ... 11

2 INTRODUCTION ... 12
2.1 Introduction to this Deliverable ... 12
2.2 Integration Philosophy .. 13
2.3 Structure of this Deliverable ... 14

3 CONCEPTUAL BACKGROUND OF THE SYSTEM ARCHITECTURE .. 16
3.1 MATURE Specific Concepts .. 16

3.1.1 Process Orientation ... 16
3.1.2 Model Orientation .. 17
3.1.3 Knowledge Management vs. Knowledge Work .. 17

3.2 State of the Art Concepts .. 19
3.2.1 Service Orientation and Virtualisation .. 19
3.2.2 Semantics.. 23
3.2.3 Web 2.0 ... 25
3.2.4 Security and Trust .. 27

4 MATURE ARCHITECTURE OVERVIEW .. 29
4.1 Bottom-Up View on the MATURE System.. 29

4.1.1 Introduction to the Bottom-Up Approach – The Rapid Prototyping Approach 30
4.1.2 Service Collection .. 31
4.1.3 Integration Scenario ... 34

4.2 Top-Down View on the MATURE System .. 40
4.2.1 Introduction to the Top-Down Approach – The Architecture View Model Approach 40
4.2.2 Logical View on the MATURE Architecture .. 41
4.2.3 Process View on the MATURE Architecture .. 43
4.2.4 Development View on the MATURE Architecture ... 48
4.2.5 Physical View on the MATURE Architecture... 48
4.2.6 Scenario View on the MATURE Architecture .. 50

5 KNOWLEDGE BUS AS INTEGRATION TOOL ... 58
5.1 Knowledge Bus Integration Layer .. 59

5.1.1 Conceptual View on the Knowledge Bus Integration Layer .. 59
5.1.2 Implementation View on the Knowledge Bus Integration Layer .. 63

5.2 Knowledge Bus Infrastructure Layer .. 64
5.2.1 Conceptual View on the Knowledge Bus Infrastructure Layer .. 64
5.2.2 Implementation View on the Knowledge Bus Infrastructure Layer ... 66

4

6 SUMMARY AND OUTLOOK ... 75
6.1 Outlook to the Further Procedure in WP5 ... 75

7 REFERENCES .. 77

ANNEX A DESIGN STUDIES – INTEGRATION RELEVANT ASPECTS ... 81
Annex A.1 Design Study “DS1: OLMEWiki” Service Collection... 82
Annex A.2 Design Study “DS2: Dialogue Games for Ontology Maturing” Service Collection 84
Annex A.3 Design Study “DS3: Interacting Widgets” Service Collection .. 85
Annex A.4 Design Study “DS5: OLMEntor” Service Collection .. 87
Annex A.5 Design Study “DS6: APOSDLE” Service Collection .. 91
Annex A.6 Design Study “DS7: Kasimir” Service Collection ... 92
Annex A.7 Design Study “DS8: SOBOLEO” Service Collection ... 93

ANNEX B SERVICE FACT SHEET .. 98

ANNEX C MATURE MESSAGE MODEL ... 103

ANNEX D KNOWLEDGE ITEM META DATA .. 107

List of Figures
Figure 1: WP5 – Objectives and Dependencies ... 12
Figure 2: The MATURE Integration Philosophy ... 14
Figure 3: Overview of the Structure of D5.2 “Specification of the System Architecture” ... 15
Figure 4: Knowledge Work as Industrial Process .. 18
Figure 5: Interaction of Service-Oriented Architecture (SOA) Principles ... 20
Figure 6: Web-Services Architectural Model ... 21
Figure 7: ESB Architecture .. 22
Figure 8: The Virtual Organisation Lifecycle... 23
Figure 9: Illustration of the WSDL-S Approach (after (Moran et al, 2005)) ... 25
Figure 10: Mashup - Example “Housingmaps.com” .. 26
Figure 11: Hybrid Approach to the MATURE System Architecture Design ... 29
Figure 12: Bottom-Up View on the System Architecture .. 30
Figure 13: Overview of the Rapid Prototyping Approach (Bijay, 2006) ... 31
Figure 14: Bottom-Up Approach on the System Architecture – Integration Scenario ... 35
Figure 15: Implementation of the Integration Scenario at the 1st Technical Partner Meeting 39
Figure 16: Top-Down View on the System Architecture ... 40
Figure 17: The MATURE System Architecture Design Method ... 41
Figure 18: Logical View on the Knowledge Bus Architecture .. 42
Figure 19: Process View on Knowledge Modelling ... 43
Figure 20: Process View on Service Registering ... 44
Figure 21: Process View on Workflow Design .. 45
Figure 22: Process View on Meta Data Management .. 45
Figure 23: Process View on Ontology Management .. 46
Figure 24: Process View on Service Provisioning ... 47
Figure 25: Process View on Monitoring and Administration ... 47
Figure 26: Development View on the Knowledge Bus Architecture ... 48
Figure 27: Physical View on the Knowledge Bus Architecture - Possible Integration at an Application Partner 49
Figure 28: Deployment of the MATURE System in a Trusted Environment .. 50
Figure 29: Knowledge Modelling Scenario .. 52
Figure 30: Semantic Service Registry Scenario ... 53
Figure 31: Workflow Modelling Scenario .. 54
Figure 32: Ontology Management Scenario ... 55
Figure 33: Meta Data Management Scenario ... 56
Figure 34: Service Provisioning Scenario .. 56
Figure 35: Administration and Monitoring Scenario .. 57
Figure 36: Layers of the Knowledge Bus ... 58

6

Figure 37: The Integration Layer of the Knowledge Bus ... 59
Figure 38: Knowledge Dimensions of PROMOTE® .. 61
Figure 38: From the Conceptual to the Technical Level .. 62
Figure 39: Integration Patterns ... 63
Figure 40: Model-Based Knowledge Management Design Framework .. 64
Figure 41: The Infrastructure Layer of the Knowledge Bus ... 65
Figure 42: jBoss ESB Architecture (jBoss ESB, 2009) .. 67
Figure 43: ESB – Direct Transformations between Service Consumers and Providers ... 68
Figure 44: ESB – Integration of Applications and Services in MATURE .. 69
Figure 45: Implementation View on the Semantic Service Registry and Discovery.. 71
Figure 46: BPEL Meta-Model (ebPML BPEL, 2009) .. 72
Figure 47: Schematic Representation of the Hierarchy of Elements in the LOM Data Model (LOM, 2009) 73
Figure 48: Further Procedure in WP5 – From the Initial Prototype to the MATURE System 76

List of Tables
Table 1: Comparison Traditional vs. Semantic Web (adapted from (Solazzo et al, 2002)) 24
Table 2: Service Integration Template for the Design Studies ... 33
Table 3: Soboleo Service - Overview ... 36
Table 4: Rule Engine Service - Overview .. 36
Table 5: Maturing Service - Overview ... 37
Table 6: Data Persistence Service - Overview.. 38
Table 7: UML Use Case Diagram Notation ... 51
Table 8: Knowledge Item Meta-Data - Knowledge Item Tag .. 73
Table 9: Service Integration Template for the Design Studies ... 81
Table 10: Design Study “DS1: OLMEWiki” Service Collection ... 82
Table 11: Design Study “DS2: Dialogue Games for Ontology Maturing” Service Collection 84
Table 12: Design Study “DS3: Interacting Widgets” Service Collection... 85
Table 13: Design Study “DS5: OLMEntor” Service Collection .. 87
Table 14: Design Study “DS6: APOSDLE” Service Collection .. 91
Table 15: Design Study “DS7: Kasimir” Service Collection ... 92
Table 16: Design Study “DS8: Soboleo” Service Collection ... 93
Table 17: WSDL implementing the MATURE Message Model (First Version) ... 103
Table 18: Knowledge Item Meta-Data - General Tag .. 107
Table 19: Knowledge Item Meta-Data - Lifecycle Tag .. 108
Table 20: Knowledge Item Meta-Data – Meta-Metadata Tag .. 110
Table 21: Knowledge Item Meta-Data - Technical Tag ... 111
Table 22: Knowledge Item Meta-Data - Rights Tag .. 112
Table 23: Knowledge Item Meta-Data - Relation Tag ... 112
Table 24: Knowledge Item Meta-Data - Annotation Tag ... 113
Table 25: Knowledge Item Meta-Data - Classification Tag ... 114

8

List of Abbreviations
AAI Authorization and Authentication Infrastructures

API Application Programming Interface

BPM Business Process Management

BPMS Business Process Management System

DAML-S DARPA Agent Markup Language for Services

D Deliverable

ESB Enterprise Service Bus

FTP File Transfer Protocol

IdP Identity Provider

IRS Internet Reasoning Service

KM Knowledge Management

KMP Knowledge Management Process

KMS Knowledge Management System

LMI Labour Market Information

MMM Mature Message Model

MOF Meta-Object Facility

OASIS Organization for the Advancement of Structured Information Standards

OCML Operational Conceptual Modelling Language

OLME Organisational Learning and Maturing Environment

OWL Web Ontology Language

OWL-S Web Ontology Language for Web-Services

P.A. Personal Advisor

PLME Personal Learning and Maturing Environment

PM Project Month

REST Representational state transfer

RPC Remote Procedure Call

SAWSDL Semantic Annotations for WSDL

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOTA State of the Art

SP Service Provider

UDDI Universal Description, Discovery and Integration

WS Web-Service

WSDL Web-Service Description Language

WSDL-S Web-Service Semantics

WSMO Web-Service Modeling Ontology

WP Work Package

WP1 Work Package 1: State of the Art, Empirical Analysis & Conceptual Model

WP2 Work Package 2: Personal-to-Community

WP3 Work Package 3: Community-to-Organisation

WP4 Work Package 4: Maturing Services

WP5 Work Package 5: System Architecture, Integration and Deployment

WP6 Work Package 6: Evaluation

XML eXtensible Markup Language

XSD XML Schema Definition Language

 11

1 Executive Summary
The present document Deliverable D5.2 (D5.2: Specification of the System Architecture) of the
MATURE project (Continuous Social Learning in Knowledge Networks, Grant Agreement no.: 216356)
has been prepared under WP5 “System Architecture, Integration and Deployment” and is one result of
task 5.1 (“System Architecture Design”). According to the MATURE Description of Work at this point in
time it is in a DRAFT status. In project month 18 the final version of this deliverable will be submitted.

This task aims to design the overall MATURE system architecture, which has to integrate various
components: wrapped services of already existing functionalities in WP2 and WP3, the personal learning
and maturing environment (PLME) in WP2, the organisational learning and maturing environment
(OLME) in WP3, the Maturing Services in WP4, as well as co-existing knowledge sources at the
MATURE application partners. Central component for this integration is the Knowledge Bus which acts
as a middle tier between the various services and knowledge sources.

Based on the integration philosophy covering MATURE specific concepts Process Orientation, Model
Orientation, Knowledge Management vs. Knowledge Work and on current SOTA (Service Orientation
and Virtualisation, Semantics, Web 2.0, Security and Trust), the system will be analysed following a
bottom-up and top-down approach.

Rapid Prototyping is applied to analyse existing services and tools for their applicability and to build a
first prototype to identify requirements for the MATURE system architecture. From top-down the
architecture view model will be applied to analyse the Knowledge Bus (as the integration layer) from the
view points of different stakeholders (end user, programmer, integrator, and system engineer). The
Knowledge Bus is analysed from a high level to identify the necessary components for registry, discovery
and invocation of services as well as the registration of knowledge sources.

The Knowledge Bus as Integration Tool is further specified by describing its layers both from a
conceptual and from an implementation view. Amongst others this includes the specification of the
service description, so that services can be discovered, and the specification of knowledge items, so that
knowledge items as the smallest data elements, can be exchanged between sources and services. The
Knowledge Bus described in this deliverable aims to act as an integration layer of a service-oriented
architecture providing an uniform interface for accessing various sources and for registry, discovering and
invoking of services as well as messaging between them.

This deliverable concludes with an outlook on the further procedure within this work package.

12

2 Introduction
2.1 Introduction to this Deliverable

The present deliverable D5.2 (“Specification of the System Architecture”) has been prepared under WP5
(“System Architecture, Integration & Deployment”) and is result of task 5.1 (“System Architecture
Design”). The objective of this task is to design the overall architecture of the MATURE system. Central
component for the integration is the Knowledge Bus which acts as a middle tier between the various
knowledge sources, the wrapped services, the two learning and maturing environments developed in WP
2 (PLME) and WP 3 (OLME) and the maturing services developed in WP 4.

Figure 1 highlights WP5’s dependencies with other work packages. As the figure depicts WP1 provides
input (indicated by arrow 1) in the form of empirical studies, the conceptual maturing model as well as
the analysis of the state of the art.

WP5 focuses on the integration, whereas the actual specification and implementation of the services is
considered in WP2 for PLME services (indicated by arrow 2), WP3 for OLME services (indicated by
arrow 3) and WP4 for Maturing services (indicated by arrow 4). These work packages provide input in
the form of service descriptions that indicate support needed from the MATURE system. Later the
MATURE system will be integrated at the application partners’ sites to show the applicability and success
of MATURE in a real world environment. Then also existing enterprise systems which are used at the
MATURE application partners will be integrated through WP5 (indicated by arrow 5).

The developed infrastructure test bed as well as the deployed system will be evaluated in WP6 (indicated
by arrow 6) focusing on the effectiveness of the system in promoting learning tailored to the needs of the
user.

WP4: Maturing ServicesWP4: Maturing Services

WP5: System Architecture, Integration and
Deployment

WP5: System Architecture, Integration and
Deployment

WP2: Personal-to-
Community

WP2: Personal-to-
Community

WP3: Community-
to-Organisation

WP3: Community-
to-Organisation

W
P

1:
 S

ta
te

 o
f t

he
 A

rt,
 E

m
pi

ric
al

 A
na

ly
si

s
&

C

on
ce

pt
ua

l M
od

el
W

P
1:

 S
ta

te
 o

f t
he

 A
rt,

 E
m

pi
ric

al
 A

na
ly

si
s

&

C
on

ce
pt

ua
l M

od
el

W
P6

: E
va

lu
at

io
n

W
P

6:
 E

va
lu

at
io

n

WP4: Maturing ServicesWP4: Maturing Services

WP5: System Architecture, Integration and
Deployment

WP5: System Architecture, Integration and
Deployment

WP2: Personal-to-
Community

WP2: Personal-to-
Community

WP3: Community-
to-Organisation

WP3: Community-
to-Organisation

W
P

1:
 S

ta
te

 o
f t

he
 A

rt,
 E

m
pi

ric
al

 A
na

ly
si

s
&

C

on
ce

pt
ua

l M
od

el
W

P
1:

 S
ta

te
 o

f t
he

 A
rt,

 E
m

pi
ric

al
 A

na
ly

si
s

&

C
on

ce
pt

ua
l M

od
el

W
P6

: E
va

lu
at

io
n

W
P

6:
 E

va
lu

at
io

n

4.
4.4.
4.

2.
2. 3.
3.

1.1. 6.6.

Existing Enterprise SystemsExisting Enterprise Systems

5.
5. 5.
5.

Figure 1: WP5 – Objectives and Dependencies

The deliverable at hand is seen as a DRAFT for the specification of the system architecture. According to
the DoW (MATURE DoW, 2007) the final version of this deliverable will be provided in PM18, taking
into account the results and the final service specifications of WP2, WP3 and WP4 and the preliminary
results of the infrastructure test bed (T5.2).

 13

2.2 Integration Philosophy

This section introduces the integration philosophy, which is used to demonstrate the underlying principles
for the MATURE system. Figure 2 provides an overview of the integration principles that will be
introduced in the following.

In order to gather requirements empirical studies were realized in WP1 (see D.1.1 (MATURE D1.1,
2009) for a detailed description) including ethnographic studies at all application partners, i.e. Careers
Scotland, Connexions Kent and Structuralia. Studying the situation at the application partners is
considered very important for driving the requirements process. Within these studies processes and
people were observed. The focus was on persons who had to be primarily engaged in knowledge work,
i.e. an ideal type of work, an abstraction comprising key characteristics of a wide array of activities in
organizations across occupations that creates, translates or applies new knowledge. One of the findings
was that maturing is made up of a complex pattern of individual steps, the so-called knowledge maturing
process. This points out that a Process Oriented Approach has to be followed to define integration
sequences and therefore enable a flexible approach for service integration.

To support Knowledge Managers or subject matter experts an OLME will be developed during the project
enabling them e.g., to analyze the current state of organisational learning in terms of contents, semantics
and processes, to take up and reuse results of community activities, and to apply breeding strategies to
topics or communities identified as relevant. This environment will help them to guide maturing activities
towards organizational goals. Individual Knowledge Workers use their PLME, which is embedded into
the working environment, to engage in maturing activities within communities and beyond. Therefore we
should clearly distinguish between Knowledge Management vs. Knowledge Work.

The MATURE system is very complex as it involves various actors and has to integrate various
technologies. Integration and maturity requires a common understanding. Modelling and Model
Orientation became commodity in system architecture and are seen as an enabler for a common
understanding. Models are representations of a selected portion of the perceived reality of an individual or
a group of observers. They have many purposes, e.g. to facilitate human understanding, communication,
organisational learning and transfer of know-how. This is achieved because models are understandable by
humans. This model oriented approach was already followed in WP1 to gather the results of the
ethnographic studies, see D1.1 (MATURE D1.1, 2009) for further details on the results.

Following a rapid prototyping approach (as pointed out in the DoW (MATURE DoW, 2007)) the tools
available at the technical partners have to be analysed for their applicability to support the MATURE end
user. Furthermore new services will be developed for the PLME and OLME and to support maturing and
have to be integrated into the system. Therefore a Service Oriented Approach will be followed for the
system architecture design. Following a Service Oriented approach available tools have to be provided as
services, thus Virtualisation will be applied to provide tool functionality as a service. Also human
services can be integrated following the virtualisation approach.

Current research challenge is to provide a proper conceptual framework in order to semantically describe
services on different levels of granularity. MATURE contributes to this research by investigating in the
semantic description of knowledge services. Semantic technology introduces intelligent mechanisms into
service oriented systems. The vision of the Semantic Web is to make content machine interpretable, hence
it is not only the human that generates and interprets content but also machines. MATURE considers such
techniques when realising mechanisms to configure and orchestrate the system for instance when
applying semantic service discovery.

The MATURE infrastructure should facilitate openness and easy adoption of the system for both user and
service provider. The tools that will be integrated make use of Web 2.0 technologies. Therefore some
Web 2.0 technologies (e.g. Ajax, Mashups or Widgets) should be taken into account when building the
MATURE system.

During the project the MATURE system will be integrated at the application partners’ sites in order to
prove the applicability of the implemented system in real-world environments. Then, at the latest,
Security and Trust will play a major role as access to sensitive or important information needs to be
protected.

14

Workflows

Tools

Services

Classification

Service
Orientation

Process
Orientation

Knowledge
Management

vs.
Knowledge

Work

Virtualization

Model
Orientation

Existing Tools
identified for
PLME in WP2

Existing Tools
identified for
OLME in WP3

Existing Tools
Identified for

Maturing in WP4

Co-existing Knowledge
Sources at Application

Partners

Services for
PLME (WP2)

Services for
OLME (WP3)

Services for
Maturing (WP4)

Knowledge
Access

Knowledge
Design

Knowledge
Storage

Knowledge
Access

Knowledge
Design

Knowledge
Storage

Knowledge
Access

Knowledge
Design

Knowledge
Storage

Knowledge
Access

Knowledge
Design

Knowledge
Storage

Knowledge
Access

Knowledge
Design

Knowledge
Storage

Knowledge
Access

Knowledge
Design

Knowledge
Storage

Knowledge
Access

Knowledge
Design

Knowledge
Storage

Knowledge
Access

Knowledge
Design

Knowledge
Storage

Knowledge
Access

Knowledge
Design

Knowledge
Storage

State of the Art
Concepts

MATURE Specific
ConceptsMATURE Scenarios

Figure 2: The MATURE Integration Philosophy

This section provided a first overview of the underlying principles for the MATURE system, namely
Process Orientation, Model Orientation, Knowledge Management vs. Knowledge Work, Service
Orientation and Virtualisation, Semantics, Web 2.0 and Security and Trust. As the above figure depicts it
can be differentiated between MATURE specific and SOTA concepts. MATURE specific concepts are
concepts that have to be taken into account when designing the MATURE system architecture and are
derived from the empirical studies in WP1. SOTA concepts are current state of the art in system design
and result form the state of the art analysis. All introduced principles will be discussed in more detail in
Chapter 3.

2.3 Structure of this Deliverable

This section introduces the structure of the present deliverable. Figure 3 depicts the main chapters and
their relationships.

After this chapter presented the role of WP5 within the project and the underlying integration philosophy
for the MATURE system architecture, Chapter 3 lays down the conceptual background. It introduces the
relevant MATURE specific concepts and the current state of the art concepts and technologies. The
concepts process orientation, model orientation, service orientation, semantics, Web 2.0 and security and
trust, which are seen as the foundation for the MATURE architecture, will be described.

Chapter 4 introduces the overall MATURE System Architecture. To specify the MATURE system
architecture a bottom-up and a top-down approach was followed. From bottom-up a rapid prototyping
approach is followed to analyse existing service within the consortium for their applicability within
MATURE. From the top-down view the system is described from multiple, concurrent views. These
views will be used to describe the system from the viewpoint of different stakeholders, such as end-users,
developers or project managers.

 15

Chapter 5 is dedicated to the Knowledge Bus, which will act as the middle tier of the architecture in order
to integrate the various knowledge sources, services, the two learning and maturing environments (WP2
and WP3) and the Maturing services (WP4). This chapter provides details on the different layers of the
Knowledge Bus from a conceptual and from an implementation point of view.

Finally this deliverable concludes in Chapter 6 with a summary and outlook on the further procedure
within this work package.

Integration Philosophy

WP1

WP2

WP3

WP4

MATURE Architecture Overview Knowledge Bus as
Integration Tool

Ethnographic
Studies

Ethnographic
Studies

State of the
Art

State of the
Art

PLME
Services

PLME
Services

OLME
Services

OLME
Services

Maturing
Services
Maturing
Services

Conceptual Background

see Chapter 2 see Chapter 4 see Chapter 5

Introduction and
Integration Philosophy

see Chapter 3

Process
Orientation

Process
Orientation

Model OrientationModel Orientation

Service
Orientation

Service
Orientation

VirtualisationVirtualisation

Knowledge
Management vs.
Knowledge Work

Knowledge
Management vs.
Knowledge Work

SemanticsSemantics

Web 2.0Web 2.0

Top-Down View on the
MATURE System

Bottom-Up View on the
MATURE System

Knowledge Bus
as Integration Tool

MATURE specific

SOTA

Figure 3: Overview of the Structure of D5.2 “Specification of the System

Architecture”

16

3 Conceptual Background of the System Architecture
This chapter aims to lay down the conceptual background that needs to be considered when designing the
architecture for the MATURE system. This chapter is based on the integration philosophy as introduced
in section 2.2, where a first overview of the underlying principles for the MATURE system, namely
Process Orientation, Model Orientation, Knowledge Management vs. Knowledge Work, Service
Orientation and Virtualisation, Semantics, Web 2.0 and Security and Trust, was provided. These
principles will be discussed in more detail in the following.

These concepts will be separated in MATURE specific concepts and State of Art concepts influencing the
system architecture. MATURE specific concepts are Process Orientation, Model Orientation and
Knowledge Management vs. Knowledge Work, whereas the relevant State of the Art concepts are Service
Orientation and Virtualisation, Semantics, Web 2.0 and Security and Trust.

3.1 MATURE Specific Concepts

This section introduces the MATURE specific concepts Process Orientation, Model Orientation and
Knowledge Management vs. Knowledge Work. These concepts were identified looking at the empirical
studies conducted in WP1 (see D1.1 (MATURE D1.1, 2009) for details).

3.1.1 Process Orientation

Nowadays the significance of process orientation is widely acknowledged. Almost every organisation
deals with process oriented concepts e.g. business process reengineering, business process modelling,
business process optimisation, total quality management or implementation of process oriented software.
The integration of KM activities into the organization’s business processes is an important factor as an
effective and efficient handling of knowledge requires it to be part of the organization’s daily routine.
Also maturing is made up of a complex pattern of individual steps, the so called knowledge maturing
process. Following a process oriented approach, knowledge can be offered to the Knowledge Workers in
a well-targeted way.

Process Oriented Knowledge Management (POKM) is built upon facts that (Hinkelmann, et al, 2002)
knowledge has to be embedded in the business process and knowledge processes can be modelled. The
POKM approach is specified by the following views on processes:

1. The first level in the POKM is covered by simple BPM. Here the business process is seen as content,
and the graphical representation in combination with a textual description is seen as making implicit
organisational knowledge about working procedures explicit. Usually this content is stored in Web-Based
repositories like providing a Web-documentation of the business processes, but can also be stored in
content management systems or in organisational handbooks.

2. The second level sees the aforementioned business process as a starting point and integration platform
for the KM system. In this case the graphical representation of the business process is used to analyse
knowledge intensive activities and to gain a common understanding, where valuable knowledge is created
and where it is required. Similar to the Model Driven Architecture (MDA), the business process is seen as
the starting point for requirements that need to be fulfilled by the knowledge management system. The
“integration platform” view sees the process as the as a mediator between knowledge services, ontologies
and information repositories to finally fulfil the needs of the business process

3. The third level interprets the process as a management approach, thus defining the sequence of
performed knowledge management activities as a knowledge management process (KMP). The key
difference as opposed to business processes is that KMP’s are mainly domain-independent and deal with
knowledge identification, knowledge accessing, knowledge usage, knowledge storage and knowledge
distribution.

 17

After this phase has introduced the first MATURE specific concept “Process Orientation”, the following
section will focus on Model Orientation.

3.1.2 Model Orientation

Often the reality is too complex and not reproducible for third parties. This is also true for the MATURE
system, which involves various actors and has to integrate various technologies. Carefully crafted models
seem to be able to overcome this drawback. Models are representations of a selected portion of the
perceived reality of an individual or a group of observers. They have many purposes, e.g. to facilitate
human understanding, communication, organisational learning and transfer of know-how. This is
achieved because models are understandable by humans. In the year 1973 Stachowiak (Stachowiak, 1973)
introduced a comprehensive concept of "model" that can be used by all disciplines.

According to the author a model has the following characteristics:

• Mapping feature: A model is based on an original.

• Reduction feature: A model only reflects a (relevant) selection of the original's properties.

• Pragmatic feature: A model needs to be useable in place of the original with respect to some
purposes.

More information on modelling theory can be found in (Stachowiak, 1973) and (Kühne, 2005).

Modelling is one of the key tasks that helps on the one hand to understand, analyze and improve business
processes, organizational structures in general and structures and processes of KM initiatives in particular
while on the other hand, modelling supports the design, implementation and management of information
systems, in our case of the MATURE system.

In MATURE modelling will be applied on several levels to get a grip on the complexity of the MATURE
system:

• Knowledge Modelling: To gather the requirements for the business oriented end user (the
MATURE application partners)

• Ontology Modelling: For the alignment of the business oriented requirements (Knowledge
Modelling) and the technical realisation (Service Modelling) an ontology will be designed. There
are various ontology representation languages, whereas the most prominent one is the Web
Ontology Language (OWL) (W3C OWL, 2009).

• Service Modelling: The services that will be integrated into the MATURE system will be
described and registered in order to be found by an end user.

3.1.3 Knowledge Management vs. Knowledge Work

As highlighted in section 2.2 the MATURE system has to support the Knowledge Manager and the
Knowledge Worker in their daily work. This section aims to differentiate between the two concepts
Knowledge Management and Knowledge Work.

The transformation of society and economy into a knowledge society and a knowledge economy has
substantially changed the work places of the majority of employees. To describe such a phenomenon, the
term knowledge work was coined by Drucker (Drucker, 1973). Knowledge work can be characterized as
follows (Maier, 2007):

• Target: Knowledge work solves ill-structured problems in complex domains with a high degree
of variety and exceptions.

• Content: Knowledge work is creative work that requires creation, acquisition, application and
distribution of knowledge and bases inputs and outputs primarily on data and information.

18

• Mode of Work: Knowledge work consists of a number of specific practices, for example creating
new knowledge, interpreting, integrating, representing, retaining and securing it, producing and
reproducing knowledge, expressing or extracting experiences or networking with other people.

• Personal Skills and Abilities: Knowledge work requires intellectual abilities and specialized
knowledge rather than physical abilities. This requires a high level of education, training and
experiences resulting in skill and expertise.

• Organization: Knowledge work is often organized in a decentralized way. It has strong
coordination, communication and cooperation needs and is highly mobile, flexible and
distributed.

• ICT: Knowledge work requires a strong but flexible support by information and communication
technologies.

By contrast Knowledge Management is defined as “the management function responsible for the regular
selection, implementation and evaluation of goal-oriented knowledge strategies that aim at improving an
organization’s way of handling knowledge internal and external to the organization in order to improve
organizational performance. The implementation of knowledge strategies comprises all person-oriented,
organizational and technological instruments suitable to dynamically optimize the organization-wide
level of competencies, education and ability to learn of the members of the organization as well as to
develop collective intelligence” (Maier, 2007).

The Application of the Knowledge Management to steer the Knowledge Work conducted in the enterprise
has become a commodity today. It is used across many different industries and applied in many different
scenarios and use cases. Similar to a conveyer belt the knowledge work carried out daily in a company
should be transformed into an industrial process. In such a scenario the Knowledge Worker utilizes the
conveyer belt to tackle the assigned tasks and based on the configuration of the conveyer belt, defined by
the Knowledge Manager, receives support by being provided with appropriate knowledge services and
knowledge sources for this specific task. The Knowledge manager is responsible for the configuration of
the conveyer belt- Based on the experience of the Knowledge Worker appropriate knowledge services
and knowledge sources are selected at the execution time based on the parameters set by Knowledge
Worker and/or Knowledge Manager.

K
no

w
le

dg
e

Se
rv

ic
e

K
no

w
le

dg
e

A
pp

lic
at

io
n

Knowledge
Worker

K
no

w
le

dg
e

Pr
ov

is
io

n

Knowledge Bus

E-Web-
Service

E-Web-
Service

E-Web-
Service

H-Web-
Service

H-Web-
Service

Knowledge
Manager

Figure 4: Knowledge Work as Industrial Process

Figure 1 provides an overview of a conveyer belt implementation using a three layer architecture: The
conveyer belt – providing Knowledge Workers with required knowledge services (KM tools and
knowledge sources), the Knowledge Bus – allowing the configuration of the conveyer belt, and

 19

orchestration of the available knowledge services (human and electronic services) based on the KM
services, and Virtual Knowledge Organisation, which repository containing all available knowledge
services. The Knowledge Bus will be the central component of the MATURE system architecture and
will be described in detail in Chapter 5.

3.2 State of the Art Concepts

After the previous section introduced concepts derived from the empirical studies in WP1 that are specific
for the MATURE system, this section will introduce the current State of the Art (SOTA) that lays down
the conceptual and technological background which has to be taken into account for the system
specification.

3.2.1 Service Orientation and Virtualisation

3.2.1.1 Service Oriented Architecture

The OASIS article “Reference Model for Service-Oriented Architecture” defines Service Oriented
Architecture (SOA) as “a paradigm for organizing and utilizing distributed capabilities that may be under
the control of different ownership domains” (OASIS, 2006).

SOA is considered to be a perspective of the software architecture which is used to support needs and
requirements of the software users by defining the usage of the loose coupling software. According to
(Erl, 2005) loose coupling “is a condition wherein a service acquires knowledge of another service while
still remaining independent of that service”. Although SOA and Web-Services are built on similar
principles, it is important to realise that they are not the same: SOA is considered to be more than just a
set of technologies and is in fact able to run independently without any specific technology, meaning that
it can be implemented/described using any of the interoperability standards (e.g. WDSL).

The evolution of SOA can be described as follows:

1. Traditional point-to-point architecture: Different services and components know everything about
the API below and above and can directly access them.

2. Service-oriented architecture: All services on different levels and layers are available via the
Internet/Intranet. One service takes over controlling responsibility for retrieval and coordination.

3. BPEL and/or WS-Coordination: All services on different levels and layers are available via the
Internet/Intranet. A well-defined process/workflow takes over controlling responsibilities.

The main SOA principles include (Erl, 2005): Service reusability, Service contract, Service loose
coupling, Service abstraction, Service composability, Service autonomy, Service statelessness and
Service discoverability. The interaction of the SOA principles is shown in Figure 5.

20

Service
composability

Service
reusability

Service
abstraction

Service
statelessness

Service
loose coupling

Service
contract

Service
autonomy

Service
discoverability

Minimizes
cross-service

dependencies in
support of

Provides an
execution

environment
conducive to

Maximizes
opportunities

for

enables

enables

enables

increases
the quality

of

increases
the quality

of

package
services in
support of

provides a
medium

promoting

provides
external service
descriptions in

support of

forms the
basis of

establishes an
environment
that promotes

Figure 5: Interaction of Service-Oriented Architecture (SOA) Principles

Various benefits can be identified for applying the aforementioned SOA principles. The major ones are
(Stevens, 2009): Better return on investment due to reuse of previously developed components that are
used as services; Code mobility since the client doesn’t have to be concerned where the service is located;
Additional security due to multiple authentication, at both the client and at the service end; Support for
multiple client types and enhanced scalability as the middleware (load balancer) can forward the requests
to multiple instances of the service, or in case that one server goes offline re-route the requests to others
(improved availability).

In contrast to traditional architecture, where the components of a system know about existing interfaces
and how to access them, in a SOA environment all services exist as loosely coupled, highly interoperable
application services and are independent of the underlying platform and programming language. SOA is a
conceptual and technology-independent concept on how to design a system in a heterogeneous
environment. Nevertheless the relation of SOA to Web-Service technology is obvious. Web-Services as
small functional units accessible through the standardized Internet protocols fulfil the requirements of
SOA: different components of the system can reside within different domains, are programmed in
different programming languages and are accessible by offering interfaces in a standard compliant
manner via the Internet.

In MATURE a SOA approach will be followed to integrate the different services developed in WP2 –
WP4.

3.2.1.2 Web-Services

Web-Services are services that can communicate with other services over a network, using a set of
standard technologies. Web-Services, and more general the previously outlined SOAs emerged as the
technologies and architectures of choice for implementing distributed systems and performing application
integration and interoperability within and across companies' boundaries (Alonso, 2004). Figure 6
presents the basic Web-Services architectural model, which explains how Web-Services are advertised,
discovered, selected, and used. This model is seen as a basis for a SOA.

 21

Figure 6: Web-Services Architectural Model

A compilation of the most influential standards for Web-Services has been defined by the Web-Services
Interoperability organisation (WS-I, 2009). The WS-I Basic Profile in the last final version 1.1 (see (WS-
I, 2006) for the specification) contains five XML based and one network level standard. On the bottom
level the Hypertext Transfer Protocol (HTTP) (W3C HTTP, 2009) ensures the interoperability on the
level of network protocols. Followed by the XML standard and the corresponding XML schema for
defining the structure and constraints for XML dialects the syntactic level of the profile are defined. To
enable the actual service interaction the Simple Object Access Protocol (SOAP) (W3C SOAP, 2009) is
included that specifies the exchange of information between service providers and service requesters.
SOAP is a method for exchanging XML based messages over the Internet for providing and consuming
Web-Services. SOAP messages are transferred forming the SOAP-Envelope. There are also other ways of
providing and consuming Web-Services: XML-RPC and REST. XML-RPC (remote procedure call)
(XML-RPC, 2009) uses XML to encode and decode the remote procedure call along with its parameter.
Representational State Transfer (REST) (Fielding, 2000) is a comparatively simpler method for providing
and consuming Web-Services. In contrast to the above two methods, it is not necessary to use XML as a
data interchange format in REST.

To express the properties of the published services (e.g. the concrete endpoints, operations, etc.) a service
provider uses the Web-Service Description Language (WSDL) (W3C WSDL, 2009). REST services
don’t need WSDL service-API definitions. Finally the Universal Description, Discovery and Integration
(UDDI) (OASIS UDDI, 2009) language is a specification for the realisation of the discovery level of
services. UDDI acts as a kind of yellow page directory where service descriptions can be published by
service providers and discovered by service requesters.

In MATURE different existing Web-Services will be integrated. These Web-Services are of different
kinds. The MATURE architecture has to enable the integration of SOAP, XML-RPC and REST services.

3.2.1.3 Enterprise Service Bus

When adopting a SOA it is now common to use an Enterprise Service Bus (ESB) infrastructure. The core
task of the ESB is to provide a set of services, which allow the creation of systems of higher complexity,
by offering the functionality for the exchange of messages between different parts of the system. An ESB
is a good foundation for building a SOA, as it enables the communication of different software
components over a common bus and is also applicable for integrating legacy applications into a common
system. The basic principle allowing this is the decoupling of the service called from the transport
medium, which is done using transformation mechanisms to translate messages, thereby mediating the
differences between message formats of different software components participating in the system.

The core principles of the ESB are virtualisation and aspect-oriented connectivity. The virtualisation is
threefold in that it virtualises the communication protocols and patterns, which means the ESB provides
conversion capabilities between different protocols and communication patterns; it virtualises the
interface, which means that the requester and the provider services do not have to agree on a common

22

interface while the ESB provides the functionality to reconcile the difference; and it virtualises the
identity, which means that the requester does not need to know about the service provider as the ESB
provides the functionality necessary to hide the identity of the provider. Aspect-oriented connectivity
means that the ESB can implement or enforce cross-cutting aspects like security, management, logging,
and auditing on behalf of service requesters and providers, removing such aspects from the concern of the
requesters and providers (Flurry, 2007).

Figure 7: ESB Architecture

Figure 7 shows the architectural core elements of the ESB. The service registry stores the services meta-
data like interface descriptions and endpoints. It is accessed by the ESB at runtime to configure the
behaviour of the system (the ESB looks up services metadata in order to gather the necessary data for
mediation). The management services comprise functionality like security, logging and monitoring. The
development services are used for the development of business- and integration logic, as well as for
administration purposes. The ESB itself offers adapters allowing connecting software components. In
order to achieve the communication between the different parts of the system, the ESB supports

• different interaction patterns in order to allow communication between different protocols,

• different message meta-models in order to mediate between message formats, and

• different mediation patterns in order to allow for more complex mediation flows, which include
several transformation steps.

All main vendors like Microsoft, IBM, BEA and Oracle offer ESB products, either in form of ESB
implementations or add-ons for existing application servers. In addition also many open source ESBs are
available. For MATURE an open source ESB will be selected, which will be in charge of transporting the
messages from requesters to providers and vice versa.

3.2.1.4 Virtualisation and Virtual Organisations

The virtualisation is an interesting trend originally introduced by the service-orientation in the Grid and
now, in a different context massively pushed in the Internet of Things. The original concept was to
represent resources in a so-called virtual environment so that the resources were able to communicate as
virtual entities. In the Internet of Things the Internet is used as the virtual environment and physical
resources are represented as services. MATURE considers this trend, as resources are represented as
virtualised services. Here electronic services and human services are virtualised and represented as
knowledge services within the system.

An interesting trend that should be observed for its applicability within the MATURE project are virtual
organizations. Virtual organizations (VOs) are groups of people who share a data-intensive goal. To
achieve their common goal, people within a VO choose to share their resources, creating a computer grid.
This grid can give VO members direct access to each other's computers, programs, files, data, sensors and
networks. This sharing must be controlled, secure, flexible, and usually time-limited. Organisations face
ongoing pressures to become more flexible and responsive to change, looking increasingly to virtual

 23

organisation to reduce organisational slack, facilitate continuous learning, and capitalise on core
competencies (Hemingway and Breu, 2003).

The VO life cycle contains all stages of the VO from creation or identification to dissolution. Figure 8
depicts the VO lifecycle consisting of the following phases (BREIN D4.1.2, 2008):

- Preparation: during which service providers specify how and what kind of products they can
offer.

- Identification: during which the service providers and resources are identified that are required to
fulfil the respective collaboration’s goals.

- Formation: during which the participants are configured to enable cross-enterprise transactions
according to the collaboration plan.

- Operation and Evolution: during which the tasks according to the collaboration plan are executed,
i.e., the transactions between participants take place.

- Dissolution: during which the collaboration is dissolved and each participant is freed from the
collaboration requirements.

Identification Formation Operation Dissolution

Evolution

Prepa-
ration

Figure 8: The Virtual Organisation Lifecycle

See (Foster, 2001), (Foster, 2004) and (Milke et al, 2006) for further information on virtual organizations.

3.2.2 Semantics

Semantic technology aims to introduce intelligent mechanisms into service oriented systems. In
MATURE semantic technologies will be applied to realise mechanisms to configure and orchestrate the
system. The SOTA in semantic service description and discovery will be presented in the following.

3.2.2.1 Semantic Service Description and Discovery

With the introduction of semantics in a Service-Oriented Architecture (SOA) the automated exchange of
semantic information between machines shall be enabled (Domingue and Fensel, 2008). For this purpose
the interfaces of services and their operations are described by semantic schemata so that a reasoning
engine may understand the properties and operations of a service. In Table 1 seven dimensions of Web-
Service features are compared in the context of a traditional Web environment against a Semantic-Web
environment. Traditionally, services can only be invoked as single services whereas in the context of the
Semantic-Web they may also take over the composition of other services to achieve a distinct goal. The
role of the requester is not executed by a human anymore but by machines while the registration of
services is not required due to their universally understandable semantic description that can be
understood by Web crawlers. The role of a broker that has been central to traditional environments
becomes that of a facilitator discovering appropriate services on the Web. The semantic description of
services corresponds to a formally defined ontology instead of a taxonomy that only contains a
classification of categories without inter linkages between the concepts and other semantic constraints.
The interaction between services is not fully explicitly described (closed world assumption) but only
partially, i.e. it would be possible that agents exercise additional behaviour that is not part of the service
description (open world assumption). Finally, the exchange of data is not only based on a common syntax
but also on common semantics.

24

Semantics-basedSyntactic-basedData exchange

Open worldClosed worldDescriptive elements

OntologyTaxonomyService description

FacilitatorKey PlayerBroker

No-registrationRegistrationProvider

MachineHumanRequestor

ComposedSimpleService

Semantic WebTraditionalDimension

Semantics-basedSyntactic-basedData exchange

Open worldClosed worldDescriptive elements

OntologyTaxonomyService description

FacilitatorKey PlayerBroker

No-registrationRegistrationProvider

MachineHumanRequestor

ComposedSimpleService

Semantic WebTraditionalDimension

Table 1: Comparison Traditional vs. Semantic Web (adapted from (Solazzo et
al, 2002))

To achieve these goals of semantically interoperating services a number of approaches have been
discussed in the scientific literature and have been partly proposed as standards. See (Martin, 2007)
(Polleres et al, 2006), (Cabral et al, 2004) and (Stollberg et al, 2007) for an overview on semantic
descriptions of Web-Services. One of the first initiatives in this regard that still attracts a lot of interest
has been DAML-S that is now known as OWL-S (DAML, 2009). It is still under development and has
not yet been officially accepted by one of the major standards institutions. OWL-S is an ontology that
contains concepts directed towards the automatic discovery, composition, and invocation of Web-
Services. The current specification of OWL-S can be found at (OWL-S, 2009). Despite the number of
citations related to DAML-S and OWL-S major drawbacks of OWL-S have been identified due to
sufferings in conceptual ambiguity, certain lacks of a concise axiomatisation, and its narrow view on
Web-Services (Mika et al, 2004). Another approach for the standardisation of integrating semantics into
Web-Services descriptions, called SAWSDL (Semantic Annotations for WSDL) can be found in the
Working Group for semantic annotations in Web-Service descriptions (W3C SAWSDL, 2009).

Further related proposals for standards include WSDL-S (Akkiraju et al, 2005), WSML and the related
ontology WSMO (Roman et al, 2005) and IRS-III (Cabral et al, 2006). In WSDL-S semantics are
included directly in the abstract definition of the WSDL documents. This approach allows for the
annotation of the input and output messages with domain concepts, the annotation of operations with
preconditions and effects and the annotation of interface definitions of services with category
information. The advantage of WSDL-S in comparison to OWL-S is seen in the availability of a language
that is already partly familiar to Web-Service developers and whose semantic description is not specific to
an ontology representation language.

 25

Service Interface

Service
Implementation

Messages

Operation

Interface

Binding

Service

Endpoint

A
bs

tr
ac

t d
ef

in
iti

on
C

on
cr

et
e

de
fin

iti
on

Semantics

OWL

UML

…

WSDL-Document

Figure 9: Illustration of the WSDL-S Approach (after (Moran et al, 2005))

The Web-Service Modelling Ontology (WSMO) is a formal ontology that contains concepts for
describing general services that are accessible through a Web-Service interface. WSMO builds upon a
meta model approach based on the Meta Object Facility (MOF) (OMG MOF, 2009) with the four top
level elements: Ontologies, Goals, Web-Services, and Mediators. Its goal is the enabling of the partial or
total automation of tasks in terms of service discovery, selection, composition, mediation, execution,
monitoring, etc. The Internet Reasoning Service (IRS) (KMI, 2009) builds upon WSMO and provides the
representational and reasoning mechanisms for implementing the WSMO meta-model to describe Web-
Services. For this purpose IRS uses the Operational Conceptual Modelling Language (OCML) ontology
representation language and describes an execution environment including application-programming
interfaces.

3.2.3 Web 2.0

The term "Web 2.0" refers to a perceived second generation of web development and design, that aims to
facilitate communication, secure information sharing, interoperability, and collaboration on the World
Wide Web (O’Reilly, 2005). Web 2.0 concepts have led to the development and evolution of web-based
communities, hosted services, and applications; such as social-networking sites, video-sharing sites,
wikis, blogs, and folksonomies. The most relevant Web 2.0 concepts and technologies for the project will
be described in the following.

3.2.3.1 AJAX

Ajax is not a technology on its own but a new concept of combining existing technologies to create and
port applications to the web. The goal is to create interactive and performing web-applications sharing the
look-and-feel of desktop applications with the same usability (Cardwell, 2005).

Traditional web-applications are based on the request-response paradigm – the user is sending a request to
the server, the request is processed and as a response the user interface is updated. In case of long-
processing time on the server or loss of connectivity, the flow of the application is interrupted.

In contrast, using AJAX each request that the user sends is a call of a JavaScript function that is delegated
to the AJAX-engine which means that the request is resolved on the client. Small updates which do not
involve server side processing are dealt with on the client. This concept increases the reaction time of the
user interface and reduces the data traffic between the server and client.

Historically the first step of this concept was taken in the late 90’s when the Outlook Web Access was
developed by the Microsoft Exchange Server developers. The concept got well known through web-
applications developed and provided by Google like Google Groups, Google Maps, Google Suggest and
Google’s emailing system Gmail.

Some of the existing applications that are evaluated for their applicability within MATURE are AJAX-
based.

26

3.2.3.2 Widgets

A web widget is a portable chunk of code that can be installed and executed within any HTML-based web
page by an end user without requiring additional compilation. Widgets are now commonplace and are
used by bloggers, social network users, auction sites and owners of personal web sites.

Widgets are a way for a site or service to creatively offer products, services or news without the need of
the user to visit the actual site. Similar to feeds and syndication, widgets can save a user time by making
everything they care about on the web easily accessible in one place.

There are a number of widget marketplaces. One example is Google Gadgets1 where various widgets
from different categories (e.g. News, Tools, Communication, Sports, Finance) are offered and can be
integrated and used on any web page.

The applicability widgets for MATURE has been evaluated in the technological design study Interacting
Widget (see D2.1 for details).

3.2.3.3 Mashups

Mashup is an upcoming concept that can be defined as a web application that combines data from more
than one source into a single integrated tool (Merrill, 2006). The term Mashup implies easy, fast
integration, frequently done by access to open APIs and data sources. An example for a Mashup is
Housingmaps2, which uses cartographic data from Google Maps3 to add location information to real-
estate data, thereby creating a new and distinct Web-Service that was not originally provided by either
source. Figure 10 depicts a screenshot of housingmaps.com. The left-hand side depicts the integrated
location information from Google Maps, whereas the right-hand side provides real estate information.

Figure 10: Mashup - Example “Housingmaps.com”

1 Google Gadgets. Access: http://www.google.com/ig/directory?hl=en&synd=open [13.03.2009]
2 Housingmaps. Access: http://www.housingmaps.com/ [13.03.2009]
3 Google Maps. Access: http://maps.google.com/ [13.03.2009]

 27

Enterprises are now investigating into using mashups in the business environment. Gartner Group
(Gartner Group, 2006) identifies enterprise mashups as one of the 10 strategic technologies. Through
2010, the enterprise mashup product environment will experience significant flux and consolidation, and
application architects and IT leaders should investigate this growing space for the significant and
transformational potential that it may offer their enterprises.

In a mashup world, SOA can provide the services that supply the raw materials to a community of
mashup users (Warner et al, 2008). Mashups enable the integration of business and data services, as
mashup technologies provide the ability to develop new integrated services quickly, to combine internal
services with external or personalized information, and to make these services tangible to the business
user through user interfaces.

Mashups are an interesting trend (see e.g. (Hoyer and Stanoevska-Slabeva, 2009)) and should be
evaluated for the MATURE system for UI integration in later phases of this WP.

3.2.4 Security and Trust

As knowledge management has become a more central part of organizational activities and dependent
upon technologies, securing organizational knowledge has become one of the most important issues in the
knowledge management area (Lee et al, 2005). As identified in section 2.2 Security and Trust issues will
also affect the MATURE system when it will be integrated at the application partners’ sites into a real
world environment. Then access to sensitive or important information needs to be protected.

The term trust management, introduced in (Blaze et al, 1996) as “a unified approach to specifying and
interpreting security policies, credentials, and relationships which allow direct authorization of security-
critical actions”. Later this definition has been broadened, not limited to authorizations, but also covering
the activity of collecting, encoding, analyzing and presenting evidence related to competence, honesty,
security or dependability with the purpose of making assessments and decisions regarding trust
relationships. Two main approaches are currently available for managing trust: policy-based and
reputation-based trust management.

• Policy-based Trust Management: This approach has been proposed in the context of open and
distributed services architectures (Bonatti et al, 2005) as a solution to the problem of
authorization and access control in open systems. The focus here is on trust management
mechanisms employing different policy languages and engines for specifying and reasoning on
rules for trust establishment. The goal is to determine whether or not an unknown user can be
trusted, based on a set of credentials and a set of policies.

• Reputation-based trust management: This approach has emerged in the context of electronic
commerce systems, e.g. eBay. In distributed settings, reputation-based approaches have been
proposed for managing trust. The focus here is on trust computation models capable of estimating
the degree of trust that can be invested in a certain party based on the history of its past
behaviour. The main issues characterizing the reputation-based systems are the trust metric and
the management of reputation data (Aberer et al, 2001).

The Security Assertion Markup Language (SAML) (OASIS SAML, 2009) is an XML-based standard
issued by OASIS (OASIS, 2009), the Organization for the Advancement of Structured Information
Standards. It serves as a framework for exchanging authentication, entitlement and attribute information
between networked entities.

Based on the foundation of SAML, Shibboleth is an architecture and open-source implementation for a
federated identity-based Authentication and Authorization Infrastructure (AAI). It supports features such
as Single Sign on (SSO) across organizational boundaries and removes the need for service providers to
maintain user names and passwords. Identity providers (IdPs) supply user information, while service
providers (SPs) consume this information and get access to secure content.

The Shibboleth architecture defines a way of exchanging information between an organisation and a
provider of digital resources (such as data, video, documents, and so on). By using Shibboleth, the
information is exchanged in a secure manner, protecting both the security of the data and the privacy of

28

the individual. In the Shibboleth model, the IdP is responsible for authenticating the user - that is, for
checking that the credentials the user presents are correct (typically with a username/password
combination). The IdP is also responsible for providing information about the user. This information is
called attribute information. The decision to authorise access to information is the responsibility of the
owner of the resource (the Service Provider), and is based on the user's attribute information.

Many organizations are using Shibboleth today to solve multi-organizational Web access problems. A list
of Shibboleth enabled applications and services can be found at (Shibboleth, 2009). Shibboleth will also
be evaluated for its applicability in MATURE.

This section provided an overview of the conceptual background and the state of the art relevant to meet
the requirements of the MATURE system architecture. In the following chapter the MATURE system
architecture will be presented from a high level taking into account the introduced conceptual
background.

 29

4 MATURE Architecture Overview
This section will provide an overview of the MATURE system architecture. To design the MATURE
system architecture a hybrid approach was followed since the beginning of WP5 in project month 6.
Figure 11 illustrates this approach. Following a bottom-up approach services were collected and a rapid
prototyping approach was followed to integrate existing services into the MATURE system as already
introduced in the DoW (MATURE DoW, 2007). From top-down the architecture view model as proposed
by Kruchten (Kruchten, 1995) was used to analyse and describe the architecture from different view
points. The figure also depicts that the alignment of the bottom up and the top down view will take place
in several iterations. Therefore in the deliverable at hand (which is submitted as DRAFT) we provide an
overview of the current status of the MATURE system from both view points but would like to point out
that the aligned version of the system architecture will be presented in the final version of this deliverable
in project month 18.

Top-Down Approach
Architecture View Model

Bottom-Up Approach
Rapid Prototyping

PM
6

PM
12

PM
18

Draft
System

Architecture

Final
System

Architecture

Start of
WP5

Infrastructure
Testbed

Figure 11: Hybrid Approach to the MATURE System Architecture Design

In the following the system will be described first, from the bottom-up view and second, from the top-
down view.

4.1 Bottom-Up View on the MATURE System

This section will introduce the bottom-up view on the MATURE system as depicted in Figure 12. A rapid
prototyping approach was followed in order to develop the MATURE system architecture from bottom
up, as already introduced in the DoW (MATURE DoW, 2007). This approach will be introduced in the
following section.

30

Top-Down Approach
Architecture View Model

Bottom-Up Approach
Rapid Prototyping

PM
6

PM
12

PM
18

Draft
System

Architecture

Final
System

Architecture

Start of
WP5

Infrastructure
Testbed

Figure 12: Bottom-Up View on the System Architecture

4.1.1 Introduction to the Bottom-Up Approach – The Rapid Prototyping Approach

Research and complex software development is a realm with high degrees of novelty, creativity and
change. Therefore it is rarely possible to create up-front unchanging and detailed specifications. Therefore
for software engineering a Rapid Prototyping approach is followed, as it supports agile, iterative and
incremental development cycles with integral testing and frequent, use case centric, adaptive
requirements analysis.

Rapid prototyping4 is founded on time-boxed iterative and evolutionary development. The foundation is
adaptive planning, that encourages rapid and flexible response to change, and frequent evolutionary
internal and external releases. Iteration planning defines which functionalities will be implemented within
the next iteration. The result of each of the iterations is an internal iteration release. Feedback from
iterations leads to refinement and adaptation of the requirements and several iterations regularly lead to
delivery of external releases to the end users – that means useful and valuable software for the end users
and valuable end user’s feedback for the development teams. Figure 13 provides an overview of the rapid
prototyping approach.

4 Bijay K. Jayaswal, Peter C. Patton (2006): Design for Trustworthy Software: Tools, Techniques, and Methodology
of Developing Robust Software, Prentice Hall.

 31

Figure 13: Overview of the Rapid Prototyping Approach (Bijay, 2006)

In MATURE we followed the rapid prototyping approach to identify technical systems and services
already in use, which are applicable for maturing. A rudimentary architecture and demonstrator will be
developed based on the findings. The goal is to establish a basic architecture on which we will build in
the following years, as well as a test bed which can be used to test initial developments.

In the following the findings of the first iteration of the rapid prototyping cycle will be presented, namely
the collected services which were analysed for their applicability within project and an initial integration
scenario which was realized as a technical demonstrator in order to identify requirements for the
MATURE system architecture.

4.1.2 Service Collection

As defined in the Description of Work (MATURE DoW, 2007) the MATURE system has to be able to
integrate the following components:

• The wrapped services of already existing functionalities identified in WP2 and WP3

• The Personal Learning and Maturing Environment (PLME) which is developed in WP2

32

• The Organisational Learning and Maturing Environment (OLME) which is developed in WP3

• The Maturing Services which are developed in WP4

• The co-existing knowledge sources at the MATURE application partners, which may include
learning management systems, E-Mail, document repositories, wikis, information about people
like stored in LDAP (light-weight directory access protocol) data bases, competence descriptions
or yellow pages.

As already mentioned before following a rapid prototyping approach, as a first step the existing services
or functionalities of existing tools were gathered and analysed for their applicability within MATURE. Th

In order to gather the integration relevant aspects right from the start, the services integrated in the design
studies were collected and integration relevant aspects were identified by the corresponding partners. The
design studies were experiments that explored key aspects that needed to be validated prior to embarking
on full scale requirements specification, which typically involved establishing that the conceptual, user,
and system design aspects of the project could be integrated (see D6.1 (MATURE D6.1, 2009) for an
overview of design studies).

The goals were, in the context of a focussed area, to: get feedback on initial ideas, to discover integration
potential, to gain experience with supporting knowledge maturing processes and, by implication and to
elicit any ‘early warning signs’ that needed to be considered and addressed as the project progressed.
Specifically, design studies were well-focused on investigating existing tools with limited further
developments and exploring both conceptual and software development foci. Within WP5 attention was
paid to the integration and architecture aspects that these studies surfaced.
Table 9 depicts the generic design study template that was instantiated by each design team by the
description of the services integrated in the design studies and the gathering of integration-relevant
attributes for WP5. The filled tables for each design study can be found in Annex A.

 33

Table 2: Service Integration Template for the Design Studies

Service
Name

Service
Description
(non-technical)

Technical
Service
Specification

MATURE
Service
Type

Technical
Service
Type

Granularity Input Output Interaction

1 Name of the
Service

Service
Description
understandable for
business users
(technical non-
savvy user)

Technical
specification of
service –
architecture,
technology used,
service structure

[OLME
Service,
PLME
Service,
Maturing
Service] –
Multiple
selection
possible

[UI Layer,
Logic
Layer, Data
Layer] –
Multiple
selection
possible

Atomic, Service
cluster[specificati
on of sub-
services
necessary using
IDs], Composite
services
[specification of
sub-services and
logical flow
necessary] –
based on SOMF
2.0 (Arsanjani,
2004)

If feasible,
technical
specification of
required input for
service (ideally
Web-Service
message
specification or
data types)

If feasible,
technical
specification of
required output for
service (ideally
Web-Service
message
specification or
data types)

Input/Output
relation to
other service
available in the
list

The service descriptions were refined in several iterations in order to describe the services on the same granularity level.

34

4.1.3 Integration Scenario

Based on the collected services an initial integration scenario was developed to identify requirements for
the MATURE system architecture. To identify services that will be integrated, it was necessary to discuss
the candidate services in more detail. Therefore a service fact sheet was created which was used as
common template to describe the services and the provided features of each service. Please see Annex B
for the Service Fact Sheet Template.

The developed integration scenario is related to the use case areas I “Learning by searching for and
exploring artefacts for the task at hand” and IV “Creating, refining, developing, aggregating, structuring,
and sharing artefacts”. This use case area supports knowledge maturing by improving the findability of
existing artefacts, making use of them in practice and to make them more mature. An overview of the use
cases can be found in the deliverable D6.1 (“Specification of Requirements”) (MATURE D6.1, 2009). A
detailed description of the use cases and how they enable personal and organisational learinging and
maturing can be found in D2.1 (“Pedagogical and usability foundations and concept for a PLME”)
(MATURE D2.1, 2009) and D3.1 (“Model of organizational requirements and of supporting services of
the OLME”) (MATURE D3.1, 2009).

Based on this use cases the first integration scenario can be described as follows:

Taking the scenario at the MATURE application partner Connexions Kent as an example, a Personal
Advisor P.A. has to provide a young person with the knowledge product career guidance. The P.A. uses
knowledge access services to identify relevant sources of labour market information (LMI). The Soboleo
service and the Data Persistence service can be used to identify knowledge sources that might be of
relevance for the case at hand.

Then maturing services enable the P.A. to select sources of labour market information (LMI) that are
reliable, valid and manageable based on certain criteria. The Maturing analysis provides the user with
information about the readability of each knowledge item and is used to classify and recommend tags for
each document. The subsequent page ranking provided by the rule engine is used to select the most
suitable knowledge sources based on rules.

Afterwards the user aggregates the various knowledge sources, resolves contradictions and presents the
information in a way that helps the young person in this scenario to understand her options. After using
the various identified knowledge sources, the user aggregates the information and stores the document. In
this scenario he/she uses the Soboleo and the Data Persistence service to store newly created documents
or to store changes to the identified documents and to save the recommended tags for each document.

Figure 14 provides an overview of this scenario and highlights the relevant concepts as introduced in
Chapter 3.

 35

Workflows

Tools

Services

Classification

Service
Orientation

Process
Orientation

Knowledge
Management

vs.
Knowledge

Work

Virtualization

Model
Orientation

Existing Tools
identified for
PLME in WP2

Existing Tools
identified for
OLME in WP3

Existing Tools
Identified for

Maturing in WP4

Knowledge
Access

Knowledge
Design

Knowledge
Storage

State of the Art
Concepts

MATURE Specific
ConceptsMATURE Scenarios

Soboleo
Search

Soboleo
Store

Maturity
Analysis

Page
Ranker

Data
Persistence

Search

Data
Persistence

Store

Search Document

Search Document

Analyze
Maturity

Rank
Pages

Store Document

Store Document

REST RESTSOAP SOAP SOAP SOAP

Figure 14: Bottom-Up Approach on the System Architecture – Integration Scenario

In the following the services that have been integrated in the first integration scenario will be briefly
introduced by providing a table with a short summary, the responsible partner, the technology used and an
overview of all features provided by the service. Please see the MATURE Wiki5 for a detailed description
of each service.

5 MATURE Wiki, Service Fact Sheets, http://wiki.mature-ip.eu/index.php/Service_Fact_Sheets

36

Table 3 provides an overview of the Soboleo service.

Table 3: Soboleo Service - Overview

Soboleo Service

Summary This service offers functions related to a document store that is
organized with a SKOS ontology or related to a domain description
in a Semantic Media Wiki (depending on configuration). Further, the
service provides functions related to a person store containing
profiles generated from user activities and explicit user annotations
(i.e. what users annotate with and how persons are annotated). Note
that the system knows about more persons (the person store) than
there are users of the system (user store).

Responsible Partner FZI

Access API

Technology SOBOLEO is implemented as a Java Web application (runs in a
current version of Tomcat). The services are currently implemented
XML and POJO over HTTP (in the context of an AJAX/GWT
applications). It is implemented as a RESTful Web-Service.

Features The service allows to search and retrieve documents, retrieve
persons, retrieve the ontology, change the ontology, change the
document store (by adding or retrieving documents), change
information about persons and to obtain a list of recent changes to
ontology, document store, and person profiles. In the following rows
only the features relevant for the prototype are documented.

Search Documents This function searches the document store using the ontology as
background knowledge.

Input: A search string (in the sense of keyword search)

Output: A list of results (document identifier) and possible query
refinements (proposed alternative search strings)

Change the Document Store Changes the document store

Input: A document identifier and a document change event (such as
add document, remove document, add annotation, remove
annotation, change annotation), user identifier

Output: Status message

Table 4 provides an overview of the RHEA rule engine service.

Table 4: Rule Engine Service - Overview

RHEA Rule Engine Service

Summary RHEA is a rule engine, which can be integrated in an internet
based workflow engine. RHEA supports the adaptivity of
knowledge intensive process parts using rules.

Responsible Partner FHNW

Access API

Technology This service is implemented as a Web-Service and provides a
WSDL interface.

 37

Features The service provides four methods for resource allocation, variable
process execution, decision making and constraints checking.

executePageRanking This method is used to execute a rule set for the ranking of pages
at execution time.

Input: Array of context relevant data and a link to a rule set

Output: Ranked list of pages.

Table 5 provides an overview of the Maturing service.

Table 5: Maturing Service - Overview

Maturing Service

Summary The already available maturing service provides a set of functions in
order to support the user in finding and creating knowledge items. In
addition, the service facilitates the improvement of quality of
knowledge items.

Responsible Partner TUG

Access API

Technology This service is implemented as a Web-Service and provides a WSDL
interface.

Features All features are based on text processing, within the design study the
services were used for evaluation of MediaWiki content. The
service-functions can be divided into two groups, mark-up
recommendation and maturing indicators.

Markup recommendation: tag recommendation and classification

Maturing indicators: reading score and semantic indicator

In the following rows only the features that will be used within the
integration scenario will be introduced.

Tag recommendation Based on a given string the tag recommendation computes the most
relevant terms.

Input: String

Output: String-Array containing terms, length=3

Classify This function classifies a string to a given set of categories

Input: String

Output: Category

Readability The Readability indicator provides several reading scores indicating
the maturity of a given text.

Input: String

Output: String-Array containing reading scores, length=2

Table 6 provides an overview of the Data Persistence service.

38

Table 6: Data Persistence Service - Overview

Data Persistence Service

Summary This service is a persistence service to store the metadata of an object.
Such objects are Twitter messages as the service has been created for
the Widget Design Study, but can serve for other artefacts, too. It
serves the metadata as an XML file and relates it to tags which are
extracted of the message itself.

Responsible Partner UPB

Access API

Technology The service uses the Web-Service implementation of Java6 and a
Hibernate wrapper for MySql to access the database.

Features The features provide functionality to store and get metadata of an
object.

Get Metadata by Tags Fetch the metadata XML file from the database, which is related to
the tags.

Input: string (tags)

Output: byte array

Store Tagged Metadata Store a metadata XML file by giving the byte array and the related
tags.

Input: string (tags), byte array

Output: None

Several challenges can be identified analysing the services integrated in this scenario. To give a specific
example related to the aforementioned scenario, one service may specify the documents in XML another
just as a String which provides the location of the document or as a byte array containing the contents of
the identified documents. Furthermore existing services are implemented to communicate in different
ways using Representational State Transfer (REST) or the Simple Object Access Protocol (SOAP).
Different semantics in messages further complicate the problem. As the number of interacting services
with proprietary message models increases (when extending the prototype within this work package), the
challenges of managing the necessary transformations to enable service interaction increase
exponentially. For each requester, a separate transformation has to be specified to each provider. A
solution to this problem is the common message model approach, where each requester needs a
transformation to the common message model, and each provider needs a transformation to the common
message model, in case they all have different models. Therefore, the total number of transformations is
reduced. More details on the common message model can be found in Chapter 5. Within MATURE the
discussion on a common message model for the MATURE purpose was started. A WSDL file
implementing this MATURE Message Model can be found in Annex C. More details on the message
model will be provided in section 5.2.2.2.

At the first technical partner meeting in Vienna the implementation of the aforementioned integration
scenario was started. The existing services were wrapped in order to implement the MATURE Message
Model. One possible approach to wrap a service is to integrate it using BPEL workflows. Figure 15
depicts a picture of the meeting and a BPEL workflow that was jointly created in the course of this
meeting. This BPEL workflow wraps the maturing service, in order to implement the MATURE Message
Model.

 39

Figure 15: Implementation of the Integration Scenario at the 1st Technical Partner

Meeting

At this point in time the introduced MATURE Message Model is only the first version that was created
based on the integrated services. The MATURE Message Model will be refined in the course of this work
package.

The wrapped services are registered, annotated and published using the WP5 infrastructure testbed as
described in D5.1 (MATURE D5.1, 2009).

The MATURE system architecture has to integrate various components. As a first step existing services
as identified in WP2, WP3 and WP4 will be integrated in the proposed integration scenario. As a next
step newly developed PLME (WP2), OLME (WP3) and Maturing (WP4) services have to be integrated.
Finally also co-existing knowledge sources in use at the MATURE application partners have to be
integrated when the system is deployed at the application partners.

The MATURE system has to provide an integration layer which acts as a uniform interface for accessing
various knowledge sources and for registry, discovery and invoking of services as well as for messaging
between services. After this section provided a bottom-up view on the MATURE system by analysing the
services to be integrated, the following section will provide a top-down view on the system by analysing
the integration layer of the system from different view points.

40

4.2 Top-Down View on the MATURE System

This section provides a top-down view on the MATURE system. First the applied architecture view
model will be described followed by an analysis of the system from multiple concurrent view points. The
system has to provide the infrastructure for the registry, discovery and invocation of the services, as well
as the messaging between the services developed in the different work packages and the registration of
knowledge sources.

Top-Down Approach
Architecture View Model

Bottom-Up Approach
Rapid Prototyping

PM
6

PM
12

PM
18

Draft
System

Architecture

Final
System

Architecture

Start of
WP5

Infrastructure
Testbed

Figure 16: Top-Down View on the System Architecture

The top-down approach will be described in the following section.

4.2.1 Introduction to the Top-Down Approach – The Architecture View Model Approach

This section describes the model that has been used to specify the overall architecture of the MATURE
system. The description of the architecture follows the 4+1 view model (Kruchten, 1995) by Philippe
Kruchten. 4+1 is a view model which is designed for describing the architecture of software-intensive
systems, based on the use of multiple, concurrent views. These views are used to describe the system
from the viewpoint of different stakeholders, such as end-users, developers and project managers.

The four views comprise the logical, the development, the process and the physical view. In addition
scenarios are used in order to make the system architecture more tangible. As a result the model contains
4+1 views as Figure 17 depicts.

 41

Logical view

Physical ViewProcess View

Development
view

End user

System EngineerIntegrator

Programmers
& software
managers

Scenarios

Figure 17: The MATURE System Architecture Design Method

In the following the different views will be described before this model is applied to describe the
MATURE system architecture from these view points.

The logical view can be seen as a layer capable of providing the information on the necessary functional
requirements that have to be addressed within a specific system in order to achieve the desired level of
functional usability for the targeted group of end users. Mostly, these functional requirements are seen as
services (dynamic or static), which are being provided to the end users of the system. The system itself,
based on the Object Oriented approach followed in this case, is decomposed to atomic actions comprising
the described services and presented in form of objects or objects classes. These classes are used to
describe the use case scenarios presented in the following paragraphs.

The development view, also known as implementation view, provides an overview of the overall system
from the programmer’s perspective, focusing mainly on software management. It is used to provide the
overall picture of the software landscape by grouping the software chunks (managed or developed by
small groups of developers) in different layers which are connected through well defined interfaces.

The process view deals with the dynamic aspects of the system, in the first place with such requirements
on the system as performance and availability / continuity. That is, this view is concerned with the issues
arising in the software development area such as concurrency, deployment, integrity, fault-tolerance,
effectiveness, etc. Based on the proposed requirements the description of the system can be made on
different levels of abstraction, where each level is used to provide answers for different requirements.

The physical (or deployment) view depicts the system from the system engineer's point-of-view. It is
concerned with the topology of software components on the physical layer, as well as communication
between these components. This view provides an overview of the deployment scenarios for the
MATURE system.

An overall scenario will be used to bring the different views together and to understand the whole
system’s functionality. In the scenario the main actors will be identified and the corresponding use-cases
will be derived.

In the following sections the introduced architecture view model will be applied to describe the
MATURE system from different view points, starting with the logical view.

4.2.2 Logical View on the MATURE Architecture

As introduced before, the logical view is an object-oriented decomposition of the system from an end user
perspective. It considers functional requirements, basically what the system should provide in terms of
services to its users. The MATURE system has to provide a central component for the configuration of
the system, the registration, the publication, the discovery and the orchestration of services and the
integration of different knowledge sources. This component which acts as a middle tier between the

42

various knowledge sources, the wrapped services, the PLME and OLME services and the Maturing
services is called the Knowledge Bus. Figure 18 shows the logical view on the middle tier of the
MATURE system by identifying all services that have to be provided to cover the required functionality.

OLME/PLME

Service
Provision

ESB

Semantic
Service

Discovery

Semantic
Service
Registry

Workflow
Manager

Workflow
Design

Workflow
Enactment

Meta Data
Managment

Meta Data
Annotation

Ontology
Management

Ontology
Design

Evaluation

Knowledge
Modelling

Figure 18: Logical View on the Knowledge Bus Architecture

In the following the components depicted in the above figure will be described.

Knowledge Modelling is used as the staring point for building up the MATURE system at a certain
application partner. Using this component the requirements are acquired with domain expert involvement.
The acquired models serve as the basis for the system configuration.

The main usage scenario for the Knowledge Worker is the use of the running system and its knowledge
services once the system is setup. The OLME (see WP3) and PLME (see WP2) are only of importance for
the actual use case. So they are not discussed in this section. Services are either offered though an OLME
or PLME environment. In both cases the needed infrastructure for the service provisioning is the same:

The entry point to the infrastructure will be the Service Provisioning that is responsible for delivering a
service to the requesting end user regardless of the internal structure (atomic service or workflow) and
independent of its location. To fulfil a request it will forward the information to the different
infrastructure elements, in order to find services or workflows, to execute them and to return the result.

The Enterprise Service Bus itself takes over the responsibility of transferring messages between the
services taking part in the system. The bus is also responsible for the mediation between the services,
which may use different message formats and communication protocols.

The Semantic Service Registry hosts the descriptions of the services registered at the ESB. These
descriptions contain data like interface descriptions, endpoint addresses, and policies covering service
level agreements, security relationships, and so on. The Semantic Service Registry covers the registration
of services, the semantic annotation of them and the publishing of services.

The Semantic Service Discovery uses the Semantic Service Registry in order to discover the potential
services/workflows for a request. To fulfil the task it will use the ontology management system to retrieve
details on the concepts that were used for describing the service or to do simple reasoning.

 43

The Ontology Management provides access to the semantics that are consumed by other subsystems. It
is also composed of an Ontology Design system that deals with the creation ontologies, in the MATURE
context a reference ontology that is used for the annotation of services and a meta data ontology is
required.

The Workflow Management is used in case the request cannot be fulfilled with a single service. It is also
responsible to “translate” abstract workflows into concrete ones, by searching for services for each
activity of the workflow template. It can be split in the Workflow Design tool that is used to define the
workflows and the Workflow Enactment that is responsible for the execution of them.

The Meta Data Manager holds detailed descriptions of the knowledge items, which are the smallest data
elements exchanged between the sources and services. With the help of the meta data there is a common
data format regarding the description of knowledge items from different sources and legacy systems. The
Meta Data Annotation is concerned with “attaching” additional information to existing knowledge items
in order to have a common format.

To enable a continuous improvement cycle of the system, the Evaluation system is used to identify
potential problems and to show potential for improvement. The definition of the evaluation system is an
ongoing task within this work package.

4.2.3 Process View on the MATURE Architecture

The process view is a process decomposition from the perspective of the integrators. There are several
ways to represent this view. For the MATURE system this view concentrates on visualizing the involved
components and the interdependencies between the components for the different usage scenarios of the
system and the interfaces needed between the subsystems from a high level.

For the usage of the system we can distinguish between design time, execution time and monitoring. The
process views for these phases will be presented in the following.

4.2.3.1 Design Time

The design time refers to the configuration of the system where services are registered and semantics are
fed into the system. In this phase the following tasks can be executed:

Knowledge Modelling (see Figure 19): The first step in configuring the system is the acquisition of
knowledge models representing the requirements from an end user and organisational viewpoint. This
system is basically not dependent of other subsystems, but the general idea is to allow a certain degree of
automation in the configuration of the system so that models created here can be reused for building the
ontology or to derive the services required for a certain application scenario. Therefore the Knowledge
modelling will also provide interfaces to exchange and to transform the models.

Knowledge Modeller

Knowledge
Modelling

Knowledge
Modelling

Model
Repository

Domain Expert

Client

Server

Knowledge ModellerKnowledge Modeller

Knowledge
Modelling

Knowledge
Modelling

Model
Repository

Domain ExpertDomain Expert

Client

Server

Client

Server

Figure 19: Process View on Knowledge Modelling

44

Service Registering (see Figure 20): Registering Services makes external services available within the
system. Each Service and its methods are described through the annotation with concepts from the
ontology. Therefore the service registry depends on the ontology management, which provides the
concepts. The ontology management has to provide an interface to retrieve the concepts stored inside. The
interface should allow retrieving the whole tree in e.g. XML format, but also allow retrieving the concepts
stepwise by first getting the root concept and then selectively the child-concepts. After the service is
registered and annotated the service can be published. From that point in time the service is available as a
Concrete Service in the system and can be accessed by other components at execution time.

Service Provider

Semantic
Service
Registry

Semantic
Service
Registry

Ontology
Management
Ontology

Management

Service
Registry

Ontology
Repository

Service Provider

Semantic
Service
Registry

Semantic
Service
Registry

Ontology
Management
Ontology

Management

Service
Registry

Ontology
Repository

Client

Server

Client

Server

Figure 20: Process View on Service Registering

Workflow Design (see Figure 21): Designing an abstract workflow involves defining abstract activities
and the control flow. Each abstract activity has to be described by ontology concepts, so that during the
execution a concrete service can be discovered based on the description. That’s where the ontology
management component comes into play. In order to allow the annotation of the activities the concepts
have to be retrieved from the ontology system. For the interface to the ontology management the same
requirements as for the service registering applies. Since each abstract service is identified by a concept in
the ontology and Concrete Services have been previously annotated with the same ontology, it is possible
to check, for each Abstract Workflow, if each class of services has at least one concrete service already
published that means if it is possible to substitute each Abstract Service with at least one Concrete
Service.

 45

Workflow Designer

Workflow
Design

Workflow
Design

Ontology
Management
Ontology

Management

Workflow
Repository

Ontology
Repository

Client

Server

Workflow Designer

Workflow
Design

Workflow
Design

Ontology
Management
Ontology

Management

Workflow
Repository

Ontology
Repository

Workflow Designer

Workflow
Design

Workflow
Design

Ontology
Management
Ontology

Management

Workflow
Repository

Ontology
Repository

Client

Server

Client

Server

Figure 21: Process View on Workflow Design

Meta Data Management (see Figure 22): The meta-data management is necessary to describe knowledge
items, which are the smallest data elements exchanged between the sources and services. Each knowledge
item consists of content and ontological meta-data. Knowledge items that are described with the common
meta-data format can be exchanged between the various integrated services and data sources. In order to
allow the annotation of the activities the concepts have to be retrieved from the ontology system. For the
interface the same requirements as for the service registering applies. The difference is the type of
concepts, so the ontology system has to provide access to different ontologies.

Knowledge Engineer

Meta Data
Management
Meta Data

Management

MetaData
Repository

Ontology
Repository

Ontology
Management

Client

Server

Knowledge Engineer

Meta Data
Management
Meta Data

Management

MetaData
Repository

Ontology
Repository

Knowledge Engineer

Meta Data
Management
Meta Data

Management

MetaData
Repository

Ontology
Repository

Ontology
Management

Client

Server

Client

Server

Figure 22: Process View on Meta Data Management

Ontology Management (see Figure 23): This task is usually done by an Ontology Engineer. For building
the ontology there are no dependencies on other subsystems, but the domain knowledge gathered through
knowledge modelling can provide valuable input. The ontology system has to store ontologies for
different purposes and has to provide access to these ontologies for other components. The necessary
functionality covers the typical ontology editing functionalities like creating, editing and deleting
concepts and the possibility to create subclasses and instances of classes.

46

Ontology Engineer

Ontology
Management
Ontology

Management

Ontology
Repository

Client

Server

Ontology Engineer

Ontology
Management
Ontology

Management

Ontology
Repository

Ontology Engineer

Ontology
Management
Ontology

Management

Ontology
Repository

Client

Server

Client

Server

Figure 23: Process View on Ontology Management

4.2.3.2 Execution Time

The execution time refers to the actual system usage when the end user (Knowledge Worker) is actually
using services. Depending on the actual service type and use case the scenarios have different process
flows and complexity as depicted in Figure 24.

In the simplest case the Knowledge Worker sends a request which is processed by the Service
Provisioning. The Service Provisioning forwards a query to the Semantic Service Discovery Subsystem,
which itself has to query information or do some simple reasoning with the help of the Ontology system.
The service discovery returns some candidate services from which the best matching is selected and
provided to the user.

In a more complex case the returned service is not an atomic one, but an abstract workflow. In this case
the service provisioning triggers the Workflow Enactment which takes over the responsibility of the
execution. In order to resolve each activity to a service the service discovery is queried on basis of the
semantic activity description.

The Ontology Management has to provide an interface to the Semantic Service Discovery, so that the
Semantic Service Discovery can query for exact matching concepts, for similar concepts and for related
concepts. There should be also possibility to perform simple reasoning queries (e.g. is concept A a
concept related to concept B, is concept A a subclass of concept C, how similar is concept A to concept
B, etc.). The Semantic Service Discovery might use this information for the ranking of the results.

The Semantic Service Discovery itself exposes interfaces to the service provisioning and workflow
enactment. In both cases the Semantic Service Discovery has to provide the functionality to find a
concrete service based on a semantic description. There should be the possibility to get a list of matching
services ordered by relevancy and the possibility only to retrieve the best matching service. The search
should allow for options such as exact match or also including similar concepts.

 47

Client

Server

Knowledge Worker

Semantic
Service

Discovery

Semantic
Service

Discovery
Ontology

Management
Ontology

Management

Service
Registry

Ontology
Repository

Workflow
Enactment
Workflow
Enactment

Service
Provisioning

Service
Provisioning

Workflow
Repository

Figure 24: Process View on Service Provisioning

4.2.3.3 Evaluation/Administration

In the evaluation phase the performance of the system is monitored to identify potentials for
improvement. This task is performed by the Knowledge Manager. He/She is responsible that the system
fulfils the needs of the Knowledge Workers.

Apart from that, the Knowledge Manager may also manage users and their access rights for the system.

Knowledge Manager

MonitoringMonitoring

Log

Client

Server

AdministrationAdministration

User

Knowledge Manager

MonitoringMonitoring

Log

Client

Server

AdministrationAdministration

User

Figure 25: Process View on Monitoring and Administration

More details on the evaluation and administration part will be provided in the final version of this
deliverable in PM 18.

48

4.2.4 Development View on the MATURE Architecture

The development view presents a subsystem decomposition that is usually done in a layered style. It
refers to the viewpoint of programmers and software managers considering the software module
organization, the hierarchy of layers, software management, reuse and constraints of tools.

As Figure 26 depicts, as in the process view we distinguish between the design time, execution time and
evaluation /administration. The description of the subsystems corresponds to the one in the logical view,
but this view additionally organized the different subsystems according to layers and visualizes the
involved data sources.

The GUI layer is the top-level layer containing the user interface and responsible for user request and
response handling. The application layer is pulled out from the GUI layer. It controls an application’s
functionality by performing detailed processing. The data layer provides the data storage and the data
access for the result. Giving data its own tier also improves scalability and performance.

Finally, the External Services provide the services (PLME, OLME and Maturing services) that will be
orchestrated by the Core System (the Knowledge Bus) to satisfy an End User request.

Core System (Knowledge Bus)

G
U

I L
ay

er
G

U
I L

ay
er

A
pp

lic
at

io
n

 L
ay

er
A

pp
lic

at
io

n
 L

ay
er

D
at

a
La

ye
r

D
at

a
La

ye
r

Service
Registry
Service
Registry

Workflow
Modeller

Workflow
Modeller

Meta Data
Annotation
Meta Data

Annotation ESBESB

Service
Discovery
Service

Discovery
Workflow

Enactment
Workflow

Enactment
Meta Data
Manage-

ment

Meta Data
Manage-

ment

Design Time
Platform

Execution Time
Platform

Evaluation/Admin.
Platform

Security and AuthenticationSecurity and Authentication

PortalPortalEvaluation
GUI

Evaluation
GUI System Configuration GUISystem Configuration GUI

Service
Registry

Workflow
Repository

Meta Data
Repository

Log Service
Registry

Workflow
Repository

Meta Data
Repository

ESBESB

Ontology
Repository

Ontology
Repository

Ontology
Design

Ontology
Design

User

Admin-
inistra-

tion

Admin-
inistra-

tion

Moni-
toring
Moni-
toring

External Services

Service
Provider

A

Service
Provider

A

Service
Provider

B

Service
Provider

B

Service
Provider

C

Maturing
Services

PLME
Services

OLME
Services

OntologyOntology

Model
Repository

Knowledge
Modelling

Knowledge
Modelling

Figure 26: Development View on the Knowledge Bus Architecture

4.2.5 Physical View on the MATURE Architecture

The physical view provides the mapping of the software to the hardware from the System Engineer’s
viewpoint. It considers non-functional requirements regarding to underlying hardware (Topology,
Communication) that can be represented in different forms.

This section is seen as input for the further WP5 tasks. Especially it is seen as input for task 5.4 where all
components of the MATURE system are deployed at the application partner’s sites to prove the
applicability of MATURE in a real-world environment. The refinement of the system deployment is a
task that lasts until the end of the project, when all components are fully developed, deployed and the
platform is analysed. Nevertheless some preliminary considerations on the future deployment can be done
at this stage. This view will show how, at a later stage, the system deployment will be done at the
application partners. At this stage Figure 27 just presents a very general view on the system and its
integration at the application partners. Here the integration with existing enterprise systems and legacy
databases has to be addressed.

 49

Application Partner

Core System (Knowledge Bus)

Existing
Enterprise

System

Existing
Enterprise

System

PortalPortal

Legacy
Database

Legacy
Database

Legacy
Database

Existing
Enterprise

System

Existing
Enterprise

System

Existing
Enterprise

System

Existing
Enterprise

System
ProxyProxy

G
U

I L
ay

er
G

U
I L

ay
er

A
pp

lic
at

io
n

 L
ay

er
A

pp
lic

at
io

n
 L

ay
er

D
at

a
La

ye
r

D
at

a
La

ye
r

Service
Registry
Service
Registry

Workflow
Modeller

Workflow
Modeller

Meta Data
Annotation
Meta Data

Annotation ESBESB

Service
Discovery
Service

Discovery
Workflow

Enactment
Workflow

Enactment
Meta Data
Manage-

ment

Meta Data
Manage-

ment

Design Time
Platform

Execution Time
Platform

Evaluation/Admin.
Platform

Security and AuthenticationSecurity and Authentication

PortalPortalEvaluation
GUI

Evaluation
GUI System Configuration GUISystem Configuration GUI

Service
Registry

Workflow
Repository

Meta Data
Repository

Log Service
Registry

Workflow
Repository

Meta Data
Repository

ESBESB

Ontology
Repository

Ontology
Repository

Ontology
Design

Ontology
Design

User

Admin-
inistra-

tion

Admin-
inistra-

tion

Moni-
toring
Moni-
toring

External Services

Service
Provider

A

Service
Provider

A

Service
Provider

B

Service
Provider

B

Service
Provider

C

Maturing
Services

PLME
Services

OLME
Services

OntologyOntology

Model
Repository

Knowledge
Modelling

Knowledge
Modelling

Figure 27: Physical View on the Knowledge Bus Architecture - Possible Integration

at an Application Partner

Some high level choices have already been done in the early phases of the project and can be summarized
as follows:

• The system is based on different logical platforms: the design platform, the execution platform
and the evaluation/administration platform

• For the different components of the system, different technologies are used

• Deployment will be based on a web, multi-tier architecture

• Scalability is one of the most important features of the deployed system

• A SOA approach is followed by the MATURE system

Following the service oriented approach the subsystems identified in the development view can be
deployed individually on different physical servers.

Figure 28 provides an overview of the deployment of the MATURE system. As the figure depicts and, as
the MATURE system follows the SOA approach, the integrated services may be deployed distributed at
different places. Services provided and deployed at the MATURE technical partners e.g. in Vienna, Graz
or Olten have to be accessed by the users of the system. All the services need to be deployed in a secure
environment that is trusted by all involved partners – service providers as well as end users.

50

As introduced in 3.2.4 a solution to achieve such a distributed but trusted environment is Shibboleth
(Shibboleth, 2009). Shibboleth created an architecture and open-source implementation for a federated
identity-based authentication and authorization infrastructure based on the Security Assertion Markup
Language (SAML) (SAML, 2009). The federated identity allows information about users in one security
domain to be provided to other organizations in a federation. This enables cross-domain single sign-on
and removes the need for content providers to maintain user names and passwords. Identity providers
(IdPs) supply user information, while service providers (SPs) consume this information and get access to
secure content. Shibboleth is proposed because it is a powerful open source solution and has a huge
supporting community.

Shibboleth
- Trusted Environment -

GrazGraz

Vienna

OltenOlten

……

Access
Point

Identity
Provider

Identity
Provider

Figure 28: Deployment of the MATURE System in a Trusted Environment

4.2.6 Scenario View on the MATURE Architecture

The scenario view aims to bring the previous views together using UML (OMG UML, 2009) use case
diagrams. Use case diagrams are used because they are a common method to identify and document
requirements bridging the gap between business requirements and technical implementation (Larman,
2005). There are three different formats and levels of formality to describe use cases. A brief summary is
used for requirement analysis. A casual description is used to show different scenarios. A fully dressed
use case description is used to show all necessary steps and variants. Within this section the use cases will
be described briefly on a high level. The description is technological neutral and will not investigate on
exchange formats and interaction mechanisms. This will be specified in chapter 5.

Table 7 shows an excerpt of the UML Use Case Diagram notation introducing the elements that will be
used in the following to describe the scenarios.

 51

Table 7: UML Use Case Diagram Notation

Element Icon Description

actor

An “actor” describes a role, which
participants take concerning to the system. In
modelling the system interface it is not
important which concrete persons make
demands. All participants are divided into
groups with the help of their demands. A role
is assigned to every group. Different
participants within a group who make the
same demands, have the same role and are
modelled with the help of a single symbol.

An actor can be a human actor, but also a
computer system. Therefore an alternative
notation can be used.

use case

A “use case” is the specification of a set of
actions performed by a system, which yields
to an observable result, which is typically of
value for one or more actors or other
stakeholders of the system.

system boundary

With the help of the “system boundary” use
cases hat logically belong together can be
grouped.

dependency

The “dependency” relation is used to depict
that a client-element depends on the supplier-
element and that a change in the supplier
affects the client. This relation is depicted as a
broken line from the client to the supplier.

association

The “association” relation is used to relate a
use case to the involved actors.

In following sub-sections the design time, the execution time and the evaluation/administration platform
of the MATURE system will be described in further detail by introducing scenarios.

4.2.6.1 Design Time Scenarios

Design time services are used by the Knowledge Manager or the Knowledge Worker to externalize their
implicit knowledge. Therefore flexible and easy-to-use editors and design tools will be provided. The
services of the design environment are accessible by execution time services through online interfaces
using Web-Service technology and therefore allow “live” update and change of the MATURE system. In
the following the design time scenarios will be introduced.

Knowledge Modelling Scenario

As already mentioned before, the Knowledge Modeller and the Domain Expert analyse the situation at the
application partner before configuring the system using a model based approach (see section 5.1 for
further details). The objective of this building block is to give full read and write access to the model
repository for human end users, according to their access rights. The main use cases are depicted in
Figure 29:

52

• Acquire Models: A Knowledge Modeller uses methods like document inspections (e.g. laws,
regulations), existing models or interviews with Domain Experts and manually models within a
graphical modelling tool.

• Design Models: This use case enables the Knowledge Modeller and the Domain Expert to refine
and create new models.

• Analyse Models: Created models can be analysed to identify potential for improvement.

• Search Models: The model search provides a quick possibility to navigate to a model containing
objects with the defined keywords, or browsing the models according to the term searched for.

• Import/export models: the import and export of models allows the exchange of models with
external systems or between different installations of the system.

Figure 29: Knowledge Modelling Scenario

Semantic Service Registry Scenario

The Service Provider uses the Semantic Service Registry at design time for the following use cases (see
Figure 30):

• Register Service: services are registered through the Semantic Service Registry Module using
strictly defined templates. The Service Provider is using this template to provide all necessary
information needed to register a new service with the MATURE System. After the successful
completion of this step, the service has been registered but is still not accessible for the discovery
and usage within the Execution Time Platform. For this it has to be annotated and published.

 53

• Annotate Service: already registered services can be annotated with ontology concepts in order to
be discovered by the Semantic Service Discovery later on. Existing annotations can be changed
as well.

• Publish Service: After the service was registered and annotated the service provider has to
publish the registered service to make it available for discovery and usage within the Execution
Time Platform.

• Edit Service: The Service Provider may want to change the service description, its parameters or
wants to unpublish or deregister the service.

• Show/browse Services: All services are listed, for the selected service the existing annotations are
shown. It is also possible to display the services that are annotated with specific concepts.

Figure 30: Semantic Service Registry Scenario

Workflow Modelling Scenario

The Workflow Modelling subsystem has to provide a set of functionalities to allow the definition of
workflows. The use cases as depicted in Figure 31 are the following:

• Import / Export Workflow Models: The import and export of existing workflow models, in order
to allow the exchange with existing systems and for deployment to the execution time system.

• Edit Workflow: This use case summarizes the creation of a new abstract workflow or the
manipulation of an existing workflow by defining the activities and the control flow.

• Remove Workflow: This functionality allows the modeller to remove deprecated processes.

54

• Annotate Workflow: Activities of existing (abstract) workflows are annotated with concepts
from the ontology, so that services for the activities can be discovered during execution time.

Figure 31: Workflow Modelling Scenario

Ontology Management Scenario

As presented in the following sections the Ontology Management component is accessed by other design
time components for the annotations of services or abstract workflows. The Ontology Engineer and other
components interact with the Ontology management system in the ways as depicted in Figure 32:

• Import/Export Ontology: The Ontology Engineer is provided with import and export
functionalities of the ontology into an appropriate ontology language.

• Edit ontology: This use case covers adding, editing or removing concepts of the ontology. It
provides the Ontology Engineer with functionalities for the maintenance of the ontology.

• Provide ontology: access to the ontology is provided to other accessing components (Knowledge
Modelling, Workflow Modelling, Semantic Service Registry) that require access to the ontology
e.g. for annotation or discovery.

 55

Figure 32: Ontology Management Scenario

Meta Data Management Scenario

The meta-data management is necessary to describe knowledge items, which are the smallest data
elements exchanged between the sources and services. Knowledge items consist of contents and
ontological meta-data. The system has to provide the Knowledge Engineer and the accessing systems
with the functionalities as depicted in Figure 33:

• Annotate Knowledge Item: A knowledge item is extended with meta data information by
annotating it with attributes like Author, Date, Maturity level, etc. Therefore the Ontology
Management has to be accessed, which provides the concepts for the annotation.

• Provide Meta Data: Provides information about already existing annotations for each knowledge
item to accessing external services (PLME, OLME or Maturing Services).

56

Figure 33: Meta Data Management Scenario

4.2.6.2 Execution Time Scenarios

This part of the MATURE system consists of services integrated within the running MATURE system.
They use information from the design environment. These services execution is triggered and used by the
Knowledge Worker. From a high level view the Knowledge Worker uses the system as depicted in Figure
34.

• Find service: The Knowledge Worker wants to find a service that conforms to his needs. He has
to provide a service description which is then used to query the service discovery. Further
systems (Semantic Service Registry and Ontology Management) interact with the Service
Discovery to provide appropriate search results.

• Invoke service/workflow: This use case can be either a follow up of the previous use case,
meaning that the service is invoked after discovering it or the Knowledge Worker might already
know which service he would like to use and therefore he only wants to invoke the service or the
workflow. The invocation of a service might be simple in the case of an atomic service or rather
complex if the service is an abstract workflow.

Figure 34: Service Provisioning Scenario

4.2.6.3 Evaluation and Administration Scenarios

The Evaluation and Administration environment provides different services that are both relevant for the
design and for the execution time. It provides basic functionality for the user administration and the
monitoring of the system.

The main use cases for the Knowledge Manager are:

• Administrate user and rights: This involves the creating, editing or removing of users and
defining their access rights. Users may only have access to a limited set of services or be able to
use the full set. There are also more fine grained access policies for the data (models, ontologies,
knowledge items).

 57

• Show log: This functionality allows access stored log data. It provides a view on the raw data of
the log which might be necessary to track a certain issue in details. This functionality is supposed
to be used by an expert user.

• Monitor system: In contrast to the previous use case the monitoring system also provides a more
high level view on the system. It visualizes data from different sources like log data (hard facts),
or questionnaire data (soft facts) in an aggregated form. This allows the Knowledge Manager to
identify potentials for improvement.

Figure 35: Administration and Monitoring Scenario

This chapter provided a first high level view (from different perspectives) on the MATURE system
following a bottom up and a top down approach. The MATURE system has to integrate wrapped services
of already existing functionalities as identified in WP2 and WP3, PLME services developed in WP2,
OLME services developed in WP3, maturing services developed in WP4 and finally, co-existing
knowledge sources at the application partners. To enable this integration within WP5 a central component
will be developed. The next section is dedicated to this central component – the Knowledge Bus.

58

5 Knowledge Bus as Integration Tool
The Knowledge Bus as introduced before is the middle tier between the various knowledge sources, the
wrapped services of already existing functionalities, the learning and maturing environments (PLME in
WP2 and OLME in WP3), the maturing services (WP4) and the co-existing knowledge sources at the
application partners.

Figure 36 provides a conceptual overview on the knowledge bus as central component of the MATURE
system. It consists of two layers, the infrastructure layer and the integration layer. The infrastructure layer
provides the basic functionality for the registration, execution and orchestration of services. The
integration layer enhances the basic functionality by introducing semantics to describe services and
messages exchanged between the services and involves the domain experts in the acquisition of system
requirements. The two layers are influenced by MATURE-specific (Model Orientation, Process
Orientation, Knowledge Management vs. Knowledge Work) and SOTA concepts (Service Orientation,
Virtualisation, Semantics and Security & Trust), which were already introduced in chapter 3.

Knowledge Bus

Integration Layer
knowledge structure, ontology, multi-dimensional meta data,

directory services, synchronisation services, taxonomy

Infrastructure Layer
messaging, security, extract, transformation, loading, inspection

Knowledge Bus Ontologies

Knowledge Product Model

Knowledge
Process Model

Knowledge
Environment Model

Knowledge Structure Model

Knowledge Service Model

Knowledge Map

MATURE-Specific Concepts
- Model Orientation

- Process Orientation

- Knowledge Management
vs. Knowledge Work

SOTA Concepts
- Service Orientation

- Virtualisation

- Semantics

- Security and Trust

Figure 36: Layers of the Knowledge Bus

In the following section each of the two layers of the Knowledge Bus will be described in more detail
both from a conceptual and from a technical perspective.

 59

5.1 Knowledge Bus Integration Layer

This section focuses on the integration layer of the Knowledge Bus. First, details on the conceptual view
will be provided, followed by a implementation view on this layer.

5.1.1 Conceptual View on the Knowledge Bus Integration Layer

Figure 37 provides an overview on the integration layer of the Knowledge Bus. The challenge of the
integration layer of Knowledge Bus is to bridge the gap between the demands of the business-oriented
end user and the technology-oriented service developer, thus the alignment of the conceptual and
technical level.

Knowledge Bus

Integration Layer
taxonomy knowledge structure, ontology, multi-dimensional meta data,

directory services, synchronisation services

Infrastructure Layer
messaging, security, extract, transformation, loading, inspection

Knowledge Bus Ontologies

Knowledge Product Model

Knowledge
Process Model

Knowledge
Environment Model

Knowledge Structure Model

Knowledge Service Model

Knowledge Map

Figure 37: The Integration Layer of the Knowledge Bus

In the following the an overview on knowledge modelling to gather the requirements of the business-
oriented end user is provided, followed by an introduction to ontologies for the knowledge bus.

5.1.1.1 Knowledge Modelling

This section introduces the model-based approach that has been selected to realise the Knowledge Bus
and point out some basic principles. Model-based approaches became a base technology over the last
years, as they proofed to simplify complex real situations to make it understandable for humans and
enable a formalisation to be interpreted by machines. Before the modelling language has been selected to
configure the Knowledge Bus, there are some initial statements required that are formulated as three
axioms:

60

• Axiom 1: Knowledge Bus can be configured model-based: The first axiom states that the
Knowledge Bus can be configured model-based where a model is seen as an immaterial reflection
of reality into a model system for the purpose of an individual (Kühn et al, 2003). This means,
that modelling languages can be used to describe the system and all related aspects in MATURE
within a modelling system to reduce the complexity, enable flexibility for end user changes and
provide formalisms for machine interpretation. The model boundaries are identified according
contextual and modelling restrictions. Model objects concerning the same context are grouped in
model types under the restriction of a reasonable number of modelling objects and modelling
instances.

• Axiom 2: Formal model as requirement for machine interpretable models: The second axiom
says that a model needs to be formalised for machine interpretation. This means that the models
consist of business graphs, execution graphs and evaluation graphs. The business graph defines
the concept; the execution graph defines the technological mapping between the concept and the
IT-infrastructure whereas the evaluation graph defines the monitoring of the execution.

• Axiom 3: Meta model as implementation approach: The third axiom is to use the meta model
concept for the implementation of the model. The new models are therefore defined on three
layers. The meta 2 model layer defines the basic modelling constructs defined in Cedif, MOF,
GOPRR or UML Profiles. The meta model layer implements the formalised business graph,
execution graph and the evaluation graph using the constructs of the meta 2 model. The
integration of the meta models followed the reference patterns for meta models (Kühn et al,
2003). The third layer implements an instance of a model.

There are three different modelling scenarios that can be observed in knowledge modelling: First, the
knowledge is modelled for documentation purpose. This means that knowledge is modelled to
communicate between workers, find an agreement, as well as to work-out details. The goal of this
scenario is to make knowledge explicit. Second, the knowledge is modelled for management purpose.
This means that knowledge is modelled to ensure quality, efficiency as well as to reduce cost and time.
The management scenario has the goal to identify knowledge as an object that has to be managed. Third,
the knowledge is modelled for configuration purpose. This means that knowledge enables a tool and
technology independent approach. The models are exported into the infrastructure where the models are
seen as tool configuration. Beside the tool independency the models from two different modelling
languages can be integrated, analysed, simulated and adapted. The configuration scenario has the goal to
configure a technical infrastructure via models.

The above mentioned modelling scenarios are often combined. A typical approach is to start with the
documentation scenario and improve the models in the second step for a management or configuration
scenario. In MATURE the knowledge will be modelled for documentation and configuration purpose, but
also for the purpose of management. Before the models can be specified in detail, a documentation
approach is applied to find a common understanding between the MATURE partners on the available
models.

In the following the knowledge management modelling language PROMOTE® will be introduced.
PROMOTE®

 is a holistic modelling approach for process-oriented knowledge management that has been
developed in the EC-Project PROMOTE (IST Project 11658) (Woitsch, 2004) and improved in the recent
years during commercial and research projects. PROMOTE® has been successfully used and extended in
the projects Akogrimo (Woitsch et al, 2006), AsIsKnown (Woitsch et al, 2007) and Brein (Woitsch and
Leutgeb, 2008), as well as in the Austrian military within the central documentation department (Mak and
Woitsch, 2005) and the ABC-Abwehrschule, which is the school to defence against nuclear, biological
and chemical weapons. This method has also been used in MATURE to document the ethnographic
studies in WP1 (see D1.1 for details)

The overall goal of knowledge management is to support the business processes within an organisation.
This assures that knowledge management has a direct link to performance improvements in order to
achieve the business goals. Although PROMOTE® does not distinguish if the business process is
graphically modelled or not, the overall assumption is that the provided knowledge supports a business
process.

 61

As a direct linkage between business process and provided knowledge is difficult – due to the fact that
business processes are modelled with different notation and in different granularities– PROMOTE®
provides an indirect coupling between business processes and knowledge products.

This entry point into knowledge management has found useful, as it provides a concrete structure for
knowledge. Starting with the identification of knowledge products, there are four dimensions that
describe knowledge management.

The top dimension is the knowledge product dimension that structures the way knowledge is provided to
the business process.

In order to generate the knowledge product, the well known process-oriented view is applied, which sees
the product as the result of process. The so-called Knowledge Management Process is identified that
produce the knowledge products.

Beside the knowledge management process – that specifies the logic sequence of knowledge interactions
to finally produce the knowledge product - the Knowledge Environment needs to be observed.
PROMOTE® interprets skills, content-oriented roles and knowledge-depending access rights as the so-
called knowledge environment.

The last dimension of knowledge is the knowledge resource. This dimension is concerned with tools,
content and knowledge that is available. Typically this dimension is well supported by the ICT
department, as traditionally knowledge management has been defined.

Figure 38: Knowledge Dimensions of PROMOTE®

Figure 38 introduces the four knowledge dimensions of PROMOTE® and indicates different management
approaches in the area of knowledge management that can be allocated to the knowledge management
dimension.

PROMOTE® has the philosophy to support knowledge management with ICT. Here it has to be pointed
out that in contradiction to most of the other knowledge management approaches, PROMOTE® supports
the Knowledge Manager in managing the knowledge and not the Knowledge Worker in using the
knowledge. Hence the ultimate goal of PROMOTE® is to support the knowledge management in order to
make the knowledge usage more efficient.

In order to support the Knowledge Manager with ICT, PROMOTE® offers a modelling language that
describes the knowledge management approach. The aforementioned four dimensions are described in
graphical models.

Figure 39 introduces the PROMOTE® model stack used to represent the real world at the MATURE
application partners in models. On the conceptual layer there are knowledge products (Knowledge

62

Product Model). An example of knowledge products would be the career guidance provided by the
application partner Connexions Kent. In order to maintain and provide such a knowledge product
different knowledge management processes (Knowledge Process Model) are executed. For instance an
employee at Kent who gives career guidance has to search for relevant information. Each knowledge
management process consists of several activities. These activities can be classified (Knowledge Structure
model) using the codes introduced in WP1. Knowledge services (Knowledge Service Model) e.g. a full
text search or yellow pages may be useful to support certain activities. As the knowledge services are also
classified using the codes, candidate services to support certain activities can be identified.

Data and Knowledge
Sources

Services & Workflows

Real World
Conceptual Layer

ICT Layer

Model

Products, Processes
and KM Services

eL
ea

rni
ng

Knowledge
Modelling

Ontology
Modelling

Service
Registration

Service
Annotation

Knowledge Product Model

Knowledge Process Model Knowledge Environment
Model

Knowledge Structure Model

Knowledge Service Model

Knowledge Products, e.g. Career Guidance

Knowledge Processes,
e.g. Search for relevant
information

Personas, Knowledge Roles,
e.g. Personal Advisor

R R R

Codes, e.g. media type (text, …), knowledge routines (search, …)

Data and Knowledge Sources

Service Layer
Workflows

KM Services, e.g. Full Text Search, Yellow Pages

Knowledge Bus Ontologies

Web-Services

Figure 39: From the Conceptual to the Technical Level

On the ICT (technical) layer each of the services as identified on the conceptual layer has to be provided
in order to be executable at execution time. This may be a Web-Service or an orchestration of Web-
Services (workflows). In order to align the conceptual and the ICT layer a semantic layer is introduced,
which is used to annotate services on the conceptual level as well as executable services on the technical
level using the Knowledge Bus ontologies.

5.1.1.2 Knowledge Bus Ontologies

The alignment of the conceptual level which describes the application scenario on a semi-formal level and
the technical and thus executable level is the challenge to be solved by the Knowledge Bus. Therefore
semantics will be introduced in form of the Knowledge Bus ontologies. As depicted in Figure 40 different

 63

integration patterns (Kühn et al, 2003) (based on semantic technologies) are feasible to address this
challenge. The extension pattern enlarges a part of a meta-model with new concepts to broaden the
expressiveness of the meta-model. The reference pattern can be regarded as a hyperlink which references
parts of another meta-model. Applying the reference pattern results in navigation paths from one meta-
model to another independent meta-model. The transformation pattern provides rules to transform parts
of source meta-models to concepts provided by a target meta-model.

Figure 40: Integration Patterns

Within the MATURE project the most appropriate integration pattern of the integration of the conceptual
and ICT layer will be selected. Details on the selected integration pattern will be provided in the final
version of this deliverable in project month 18.

After providing a conceptual overview of the integration layer in this section, the following section deals
with an implementation related view on this layer.

5.1.2 Implementation View on the Knowledge Bus Integration Layer

This section introduces the implementation view on the knowledge bus integration layer. The Knowledge
Bus integration layer enables a model-based configuration and initialization of MATURE.

Three implementation approaches will be followed:

1. The meta-modelling approach will be used to implement a method-independent and flexible
modelling environment,

2. A service-oriented modelling framework will be used, in order to realise a flexible modelling
infrastructure as well as

3. Web-application technology will be used to realise the modelling framework and to enable a
transparent access to the modelling system.

These implementation approaches will be followed by proposed model-based knowledge management
design framework as depicted in Figure 41. It is implemented following the reference architecture of the
ESB (which will be introduced in 5.2.2.1).

64

Service
Invocation Manager

Service
Invocation Manager

Application Services

Service
Registry

Component ServicesComponent Services Utility ServicesUtility Services

Basis ServicesBasis Services

AcquisitionAcquisition Model
Design
Model
Design AnalysisAnalysis

SimulationSimulation PublishingPublishingImport
Export
Import
Export

Trans-
formation
Services

Trans-
formation
Services

Figure 41: Model-Based Knowledge Management Design Framework

The Service Invocation Manager is the implementation of the communication of the communication
protocol, the application services communicate over. The Service Registry holds the descriptions of the
deployed application services.

The application services themselves are the services supporting the work in the domain, in this case the
graphical knowledge modelling. They can be further distinguished using the categories “Basis Service”,
“Utility Service” and “Component Service”.

Basis Services offer therefore access to the model and the meta model repositories etc. Basis services are
chosen based on the specifications of the OGSA framework (Globus OGSA, 2009). The basis services
offer standard functionality necessary for graphical modelling, which can be used by component services.

Utility services are more general in their functionality and are not necessarily specific for the graphical
modelling domain. Such services may be sorting algorithms, XML parsers or transformation mechanisms.
Utility services may be used by various component services.

Component services comprise all modelling services that can actually be used by an end user and can be
regarded as autonomous, as they offer a benefit to the user even if deployed autonomously. They
comprise a well-defined set of functionality, which may or may not be based on basis- and utility
services. The component services comprise services for the acquisition, design, analysis, simulation,
import/export, publishing of the knowledge base. This includes knowledge models and ontologies.

This section presented details on the integration layer of the Knowledge Bus. In the following the
infrastructure layer will be presented.

5.2 Knowledge Bus Infrastructure Layer

This section focuses on the infrastructure layer of the Knowledge Bus. Details on the conceptual and on
the implementation view will be provided in the following.

5.2.1 Conceptual View on the Knowledge Bus Infrastructure Layer

Figure 42 gives an overview of the infrastructure layer of the Knowledge Bus. The infrastructure layer
provides basic functionality to enable the execution of knowledge services. As the figure depicts the main
components of this layer are the enterprise service bus, several adaptors, the semantic service registry, the
semantic service discovery, the workflow management and the meta-data management component.

 65

Knowledge Bus

Integration Layer
taxonomy knowledge structure, ontology, multi-dimensional meta data,

directory services, synchronisation services

Infrastructure Layer
messaging, security, extract, transformation, loading, inspection

Knowledge Bus Ontologies

Knowledge Product Model

Knowledge
Process Model

Knowledge
Environment Model

Knowledge Structure Model

Knowledge Service Model

Knowledge Map

Figure 42: The Infrastructure Layer of the Knowledge Bus

This section provides an overview of the components of the knowledge bus from a conceptual level,
before the following section provides further implementation details. In the following each component of
the infrastructure layer will be briefly described before the following section provide more details on the
implementation view.

Enterprise Service Bus: The Enterprise Service Bus is the part of the infrastructure which is in charge of
transporting the messages from senders to receivers. It offers interfaces for attaching Adapters, which
allows the mediation between different message formats used by the services. In order to identify senders
and receivers the Enterprise Service Bus needs to cooperate closely with the Semantic Service Registry
and the Semantic Service Discovery.

Adapter: The Adapters are pieces of software, attached to the Enterprise Service Bus. Their purpose is to
translate the different services’ messages to and from a common format, which can be transmitted
through the Enterprise Service Bus. The following transformations are possible: among Web-Services,
between legacy applications and Web-Services and between human services and Web-Services.

Semantic Service Registry: The Semantic Service Registry holds the descriptions of the deployed
services. The descriptions contain not only syntactic information like in pure WSDL, but also semantic
information used to identify the functionality of the services. It provides functionalities to register,
annotate and publish services.

66

Semantic Service Discovery: The Semantic Service Discovery operates on the semantic data in the
descriptions of the services. Its task is to identify services matching a request. It informs the client-
services whether there are provider-services that can deliver the functionality required. Moreover it
decides which service to pick, if there is more than one available.

Workflow Management: The Workflow Engine serves the purpose of creating new functionality by
orchestrating available services. For this reason the Workflow Engine must interact with the service
discovery component.

Meta-Data Management: The meta-data management is necessary to describe knowledge items, which
are the smallest data elements exchanged between the sources and services. Each knowledge item consists
of content and ontological meta-data. Knowledge items that are described with the common meta-data
can be exchanged between the various integrated services and data sources.

After this section provided a conceptual overview on the infrastructure layer the following section a look
at the implementation view.

5.2.2 Implementation View on the Knowledge Bus Infrastructure Layer

This section provides an overview on the infrastructure layer from an implementation view. As already
mentioned before, different components are necessary to enable the registration and execution of services.
A high level overview has already been provided in chapter 4.

5.2.2.1 Enterprise Service Bus

The Enterprise Service Bus (ESB) is based on the message bus concept. An application or service that
sends messages through the message bus must prepare the messages so that they comply with the type of
messages the bus expects (see the section 5.2.2.2). Similarly, an application or service that receives
messages must be able to understand (syntactically, although not necessarily semantically) the message
types. If all applications or services in the integration solution implement the bus interface, adding
applications/services to or removing applications/services from the message bus incurs no changes. This
is realized as all services that will be integrated will implement a common message model, which will be
introduced in the following when introducing the adaptors.

An ESB is based on the message bus concept, but provides additional infrastructure services (e.g.
transformation and routing). It is the implementation backbone for a loosely coupled, event-driven SOA.
Further details on the ESB have been provided in the conceptual background section 0.

An open source ESB will be used in the MATURE project, as it will provide enough flexibility to be
extended when needed during the course of this work package. The open source jBoss ESB has been
selected, Figure 43 depicts its architecture. It uses a flexible architecture based on SOA principles such as
loose-coupling and asynchronous message passing, emphasizing an incremental approach to adopting and
deploying a service oriented infrastructure (SOI). It is a pluggable architecture where infrastructure
services (e.g. transformation, routing or event notification), business services and event listeners and
actions can be integrated. The figure depicts, which parts of the ESB architecture are realized now
(highlighted in blue), are provided by partners (highlighted in grey) or are seen as developments that will
be realized for future versions of the ESB (highlighted in green).

 67

Figure 43: jBoss ESB Architecture (jBoss ESB, 2009)

As shown in the figure the ESB is extendable as different infrastructure services can be plugged into it,
like for example the adaptors, the semantic service registry and discovery or the workflow engine. All this
components that that will be plugged into the ESB to transform it into a Knowledge Bus will be provided
in the following.

5.2.2.2 Adapter

Due to the legacy environment that most organizations have to deal with, applications often use
proprietary models and meta-models (syntax) to describe information (semantics) in the messages they
send or receive. An example is pointed out in (Selvage et al, 2008): Even if all participants use the same
meta-model, for example, XML Schema Definition Language (XSD), they can still use a different
message model, such as a different schema. Challenges arise when there are multiple proprietary message
models and meta-models from different applications describing the same information, such as customer.
Even if they have the exact same meta-model, such as XSD, you might still need to exert great effort to
align and map these models.

To give a specific example, one application might provide the name of a person in a single attribute,
while another application might structure it in two attributes: one attribute for first name and another for
the last name. Potentially different semantics in messages further complicate the problem: A marketing
campaign application may define a customer differently (for example, including potential customers) than
a call centre application (where a customer is a person that has purchased a product).

The role of the ESB is to establish loosely coupled connectivity between services. That role includes
transformation between the different message models and meta-models. However, as the number of
interacting applications with proprietary message models increases, the challenges of managing the
necessary transformations to enable service interaction increase exponentially.

Figure 44 illustrates the problem of performing direct transformation between service requesters and
providers. In this example, n service requesters interact with m service providers. Each service uses its
proprietary message model for communication. The message model in general reflects the application's
internal data model. For the requesters to invoke the service of the providers, the message models from
the requesters need to be transformed into the message models of the providers. In this scenario the ESB

68

has to understand all the proprietary message models and transform between the message models.
Therefore the ESB must provide transformations for each possible interaction. For each requester (n in
this scenario), a separate transformation has to be specified with respect to each provider (m in this
scenario). That means m transformations for the first requester, m transformations for the second, and so
on. The result is a total number of transformations of n * m. If one new provider is added and all
requesters need to interact with it, again n new transformations need to be added. If one new requester is
added and needs to interact with all m providers, then again m transformations need to be added. The
consequence, of such an integration solution is the poor extensibility.

Figure 44: ESB – Direct Transformations between Service Consumers and

Providers

A solution to this problem is the CMM (common message model) approach, where each of the requesters
(n of them) needs a transformation to the CMM, and each of the providers (m of them) needs a
transformation to the CMM, in case they all have different models. Therefore, the total number of
transformations is n + m. If a new service, as a service requester or provider, is being introduced and this
service uses a proprietary message model, only the transformation between the CMM and the application-
specific message model needs to be created, regardless of the number of applications that already
participate. This reduction in the number of transformations illustrates the core benefit of using the CMM
pattern and helps to reduce the number of required transformation in this heterogeneous environment
from n * m to n + m. The service consumers and providers have to translate their original proprietary
models into the CMM, which means that they have to build adaptors.

In an ideal scenario the messages used by the service requesters and the service providers have all been
defined using the CMM. Because all applications use the CMM, therefore no transformations are required
— neither in the applications nor in the ESB. This approach is unrealistic when connecting legacy
applications like in MATURE when integrating the legacy applications at place at the MATURE
application partners. Nevertheless this approach is ideal for new applications, because they can directly
adopt the CMM as their internal data model and, therefore, reduce the effort of developing
transformations that might have to take place when mapping between an internal data model and an
external message model. This will be the case for services that will be developed from scratch during the
project, like in WP2, WP3 and WP4. The approach followed in MATURE is depicted in Figure 45, where
legacy applications of the application partners and existing services need to be integrated by
implementing adaptors, while some services will be newly implemented. The common message model
within the MATURE project is called the MATURE Message Model (MMM).

 69

MMM

MMM MMM

MMM

MMM

MMM MMM

MMM

MMM

MMM

MMM

MMM

MMM

MMM

MMM MMM

MMM

MMM

MMM MMM

MMM

MMM

MMM

MMM

MMM

MMM

Figure 45: ESB – Integration of Applications and Services in MATURE

Adaptors have to be developed in order to implement the MMM. The following transformations are
possible:

• Among Web-Services: Transformation may be necessary if the Web-Services already exist and
their implemented message model differs from the agreed MMM

• Between Legacy Applications and Web-Services: Legacy applications may be anything, from
Minesweeper to a “DBMS”. In order to attach them to the Bus they must be coupled with
adapters that allow them to communicate over the MMM. In most cases this concretely means
that they need to be wrapped up into Web-Services implementing the MMM.

• Between Human Services and Web-Services: Special attention is also required when integrating
virtualized “Human Services” into the Bus. Human Services are those typically used among
natural persons for communications, like Email or short messages.

Recalling the integration scenario introduced in section 4.1.3, this means that adaptors have to be built for
each existing service that does not implement the MMM. Services that will be implemented during the
project can implement the MMM as part of the service specification right from the start so that it will not
be necessary to develop an additional adaptor.

5.2.2.3 Semantic Service Registry

The Semantic Service Registry is the component for the registration and semantic annotation of the
services. Current standards describe Web-Services using syntactic notations such as WSDL. Since these
descriptions are machine readable but not machine understandable, only IT personnel can carry out most
of the tasks associated with creating and maintaining Web-Service-based applications such as Web-
Service discovery, composition, and invocation. These tasks can be automated to a great extent by
applying semantic technologies (such as OWL-S, WSMO, WSDL-S).

70

First, the service has to be registered by describing it on a non-functional level. This is done by providing
information about the service provider as well as quality of service (QoS) aspects like security, time, cost
or accessibility. The structure of this non-functional description is the following:

• ID: an identifier given by the system at registration time;

• Label: the name of the service;

• Description: a natural language description;

• Type (WS, HUMAN): is an enumeration field whose values are: WS for services provided as
Web-Service and HUMAN for services provided by a human being;

• HTTP Address: the http address where the Web-Service implementation can be invoked from;

• Input: the list of required parameters;

• Output: what the service releases;

• Cost: the price of the service expressed in euro (e.g., 2.5);

• Time: the estimated time for the service execution (e.g., 0.5 sec);

• Service Provider: provider of the service - it contains a reference to a Service Provider instance
(e.g., SP1)

A Service Provider is a real instance of an institution or organization that provides certain services. The
structure of the Service Provider template is the following one:

• ID: an identifier given by the system at registration time (e.g., SP1);

• Name: the label used for referring to the Service Provider;

• Description: a natural language description of the Service Provider;

• Contact Details: address information;

• Contact Person: information like name, telephone number, e-mail address of the contact person.

In order to be discovered by the semantic service discovery the service and its parameters have to be
semantically annotated on a functional level (Stollberg et al, 2007). Therefore the services’ operations and
corresponding input and output parameters will be annotated using the concepts of the previously
introduced MATURE Message Model (MMM) are used (see section 5.2.2.2 for further details on the
MMM) which is provided as an ontology.

After the service has been registered and annotated it can be published. Published Web-Services are
accessible by other systems as the Semantic Service Registry will provide functionality to find published
services through Web-Service interfaces. Figure 46 provides an overview on the architecture of the
semantic service registry and semantic service discovery (which will be introduced in the following
section). A human service provider can access the service registry GUI to register, annotate and publish
his/her service. A model of the service and its annotations are stored in the model repository.

See D5.1 for a user manual on the service registration, annotation and publication using the semantic
service registry component.

5.2.2.4 Semantic Service Discovery

The Semantic Service Discovery operates on the semantic data (according to the MMM) in the
descriptions of the services. Its task is to identify services matching a request. It informs the client-
services whether there are provider services that can deliver the functionality required. Moreover it
decides which service to pick, if there is more than one available.

Once a service was successfully published using the semantic service registry (as explained in the
previous section), accessing services can find the service using the provided API to the semantic service

 71

discovery as Figure 46 depicts. For testing purposes, a discovery GUI is provided to allow a service
administrator to evaluate if the published service is found successfully.

Model Based Service Discovery Framework

Service Registry
Models

Basis Services

Component
Services

GUI Services

Read Data
Service (ADOWS)

Write Data
Service (ADOWS)

Service Registry Semantic Service
Discovery

Test Discovery
GUI

Service Registry
GUI

Execution time

Accessing
Services

DiscoveryDesign

Design Time

Service
Provider

… Graphical User Interface

… Web-Service Interface

Ontology, Services
models, SLAs, …

Accessing
ServicesAccessing

Services

Service
Administrator

Figure 46: Implementation View on the Semantic Service Registry and Discovery

When the Semantic Service Discovery receives a request by an accessing service it first searches for
potentially usable Web-Services. Therefore semantic matchmaking concerning the functional description
of the service is executed. If no service is found that can be accessed directly, a combination of Web-
Services will be composed. As a next step the found services will be weighted according to the non-
functional description (e.g. service provider, time, cost, quality) and the most appropriate service is
selected. Finally the information is exchanged between the requester and the selected Web-Service, thus
the Web-Service is executed.

5.2.2.5 Workflow Management

The Workflow Engine serves the purpose of creating complex services by orchestrating available
services, thus enabling complex services. For this reason the Workflow Engine has to cooperate with the
service discovery component. The orchestration problem needs technologies that enable its real and
effective implementation. Such technologies should address the two most important aspects of
orchestration: How is the orchestration between services modelled and described? How is the
orchestration model interpreted and executed?

The first question is addressed by selecting a language that can describe the control and data flow
between different entities, possibly specified in both an abstract way (i.e. without referring to real
implemented piece of software of service) and a concrete way (i.e. binding the entity specification to a
precise service or resource). From this point of view the Web-Services business process execution
language (WS-BPEL) has been selected. Its specification enables the description of highly complex
workflows, within which parties exchange information by following the control and data flows
descriptions. WS-BPEL is a fully working orchestration language that supports abstract and concrete
specification of services and that provides a very wide range of constructs for flow control, data binding
and variable definition.

As defined in the specification, “WS-BPEL provides a language for the specification of executable and
abstract business processes. By doing so, it extends the Web-Services interaction model and enables it to
support business transactions. WS-BPEL defines an interoperable integration model that should facilitate
the expansion of automated process integration in both the intra-corporate and the business-to-business
spaces.” (OASIS BPEL, 2009)

72

The detailed specification on WS-BPEL can be found in the official WS-BPEL specification (OASIS
BPEL, 2009) developed by OASIS (OASIS, 2009).

Figure 47: BPEL Meta-Model (ebPML BPEL, 2009)

Figure 47 gives an overview on the structure of WS-BPEL and the corresponding meta-model. WS-BPEL
utilizes and integrates several XML specifications and standards. Details on each standard can be found at
the reference provided:

• WSDL 1.1 and XML Schema 1.0 are used to build the data model

• XPath 1.0 and XSLT 1.0 are used to add data manipulation support

It is important to note that all external sources in WS-BPEL are addressed and represented using WSDL
definitions.

An engine should be selected in charge of effectively parsing and executing the workflow. Such an engine
needs to maintain adequate data-structures and information about a workflow so that execution can be
steered, monitored and managed in a flexible way. Moreover, such an engine should also provide all the
necessary APIs, languages, protocols and standards for making it possible to invoke service’s methods,
passing them inputs and retrieving, when necessary, outputs. A wide range of WS-BPEL engines exist.
An open source WS-BPEL engine will be selected for use in the MATURE project to enable
orchestration of services. Implementing an SOA based approach the WS-BPEL compliant open source
workflow engine provided by Active-Endpoints6 is implemented as the runtime environment.

The Active-Endpoint engine is a Java-based implementation of a WS-BPEL workflow engine, available
under the GPL licence7. The update on WS-BPEL 2.0 and an open architecture based on web/application
server and using the Apache Axis implementation as a Web-Service container allow flexible adaptation
and use within the project. All functions and information needed regarding the workflow engine are
accessible via administrative Web-Services, allowing a high level of integration in any domain.

6 Active Endpoints Homepage. Access: http://www.activevos.com/ [10.04.2009]
7 General Public License (GPL). Access: http://www.gnu.org/copyleft/gpl.html [10.04.2009]

 73

5.2.2.6 Meta-Data Management

This section specifies the knowledge items, which are the smallest data elements exchanged between the
sources and services. Each knowledge item consists of content and ontological meta-data. There are a
number of domain-independent initiatives to standardize meta-data, e.g. Dublin core (Dublin Core
Metadata Initiative, 2009), Digital Object Identifier (Digital Object Identifier System, 2009) or the Text
Encoding Initiative (Text Encoding Initiative, 2009). For MATURE the most relevant initiative is the
Dublin Core Metadata Initiative which mainly aims at the description of text documents. Apart from the
domain-independent meta-data standards there are a number of domain-specific ones. The most relevant
one for the project is the Learning Object Metadata (LOM) (LOM, 2009), which is used for the
description of learning objects. LOM is a data model (based on Dublin Core), usually encoded in XML,
and used to describe a learning object and similar digital resources for supporting learning. The purpose
of learning object metadata is to support the reusability of learning objects, to aid discoverability, and to
facilitate their interoperability, usually in the context of online learning management systems. Most of the
LOM concepts can also be applied in the context of the MATURE system. Figure 48 shows a schematic
representation of the hierarchy of elements in the LOM data model. Extensions to the model will be made
to include MATURE specific aspects, e.g. the maturity level of knowledge items.

Figure 48: Schematic Representation of the Hierarchy of Elements in the LOM Data

Model (LOM, 2009)

In the following the base schema structure of the meta-data used to describe knowledge items will be
detailed. Extensions of LOM to include MATURE specific concepts are included and highlighted
(orange-coded) in the tables. Table 8 presents details on the root tag – the knowledge item tag.

Table 8: Knowledge Item Meta-Data - Knowledge Item Tag

 Knowledge Item Tag

Nr Name Description Datatype

1 General This tag groups the general information
that describes the knowledge item as a
whole

GENERAL TAG

2 Lifecycle This tag groups features related to the
history and current state of the knowledge
item and those who have affected this
knowledge item during its evolution.

LIFECYCLE TAG

74

Here MATURE specifics like the
“Maturity Level” will be included.

3 Meta-Metadata This tag groups information about the
metadata instance itself (rather than the
knowledge item that the metadata instance
describes)

METAMETADATA
TAG

4 Technical This tag groups technical requirements
and technical characteristics of the
knowledge item.

TECHNICAL TAG

5 Rights This tag groups the intellectual property
rights and conditions of use for the
knowledge item.

RIGHTS TAG

6 Relation This tag groups features that define the
relationship between the knowledge item
and other related knowledge items.

RELATION TAG

7 Annotation This tag provides comments on the use of
the knowledge item and provides
information on when and who created the
comments.

Here MATURE specifics like a “Rating”
of Knowledge Items are included.

ANNOTATION TAG

8 Classification This tag describes this knowledge item in
relation to a particular classification
system.

CLASSIFICATION
TAG

Each of the mentioned tags and the corresponding attributes is presented in Annex D. This chapter
described the Knowledge Bus as an integration tool. All components of the Knowledge Bus were
described from a conceptual and from an implementation view.

 75

6 Summary and Outlook
The present deliverable D5.2 (Specification of the System Architecture) aimed to guide the integration of
the services which will be developed in WP2 (PLME services), WP3 (OLME services) and WP4
(Maturing services) by specifying the MATURE system architecture. In the following the followed
methodology to reach this goal will be summarized.

After the followed integration philosophy was introduced the relevant MATURE specific and SOTA
concepts were introduced. Based on this conceptual foundation the system was described from a high
level. The approach followed was a hybrid approach, analysing the system from the bottom up and the top
down.

From the bottom up a rapid prototyping approach was followed to analyze existing services (PLME,
OLME and Maturing services) and application for the application within MATURE and to integrate them
in a first integration scenario.

From the top down the necessary infrastructure that enables the integration and execution of services and
legacy applications at the MATURE application partners was derived. Therefore a view model was
applied to analyse the system from different viewpoints.

The Knowledge Bus as central component of the MATURE system was described in more detail. It
consists of two layers, the infrastructure layer and the integration layer. The infrastructure layer provides
the basic functionality for the registration, execution and orchestration of services. The integration layer
enhances the basic functionality by introducing semantics to describe services and messages exchanged
between the services and involves the domain experts in the acquisition of system requirements. Both
layers were described in detail thus emphasizing its role as an integration tool within the project.

The present deliverable is at this point in time in a DRAFT status. The further procedure followed in WP5
will be introduced in the following section.

6.1 Outlook to the Further Procedure in WP5

This section concludes this deliverable by providing an outlook to the further procedure followed by
WP5. This deliverable provided an overview of the MATURE system architecture, which is at this point
in time in a DRAFT status. Figure 49 summarizes the further procedure in this work package.

The system architecture will be refined within the related task 5.1 (“System Architecture Design”), the
final version will be available in project month 18. The infrastructure required to realise the system
architecture is implemented within task 5.2 (“Infrastructure”). The developed test bed will be used by
developers to integrate their knowledge sources, use already available services and test their own
services. Refinements of the system architecture will be continuously realised in the infrastructure, if
affected. The knowledge sources and services have to be prepared so that they can be connected to the
Knowledge Bus using adaptors. This will be part of task 5.3 (“Integration”). Finally, within task 5.4
(“Deployment”), the MATURE system will be deployed at the application partners’ sites and evaluated in
order to demonstrate the success of MATURE in a real world environment. As the figure depicts during
the duration of this work package several prototypes will be realized.

76

Level of Integration ComplexityStart Date M6 End Date M39

T5.2 Infrastructure

T5.3 Integration

T5.4 Deployment

T5.1 System Architecture Design

P2:Integrated
services on K-
Bus beta

P1: Registered
services on K-
Bus alpha

P3:Integrated
Management
services on K-
Bus beta

Phase 3: Integration
Mechanisms

Phase 2: Basic
Integration

Phase 1: Rudimentary
Architecture and

Demonstrator

Figure 49: Further Procedure in WP5 – From the Initial Prototype to the MATURE

System

 77

7 References
Aberer, K. and Despotovic, Z. (2001). Managing trust in a peer-2-peer information system. In: Proceedings of 10th
International Conference on Information and Knowledge Management, pages 310–317, 2001.

Active Endpoints Engine Architecture. Access: http://www.active-endpoints.com/open-source-
architecture.htm [17.03.2009]

Akkiraju, R., et al. (2005): Web-Service Semantics - WSDL-S, W3C Member Submission, 7 November
2005. Access: http://www.w3.org/Submission/WSDL-S/ [12.03.2009]

Alonso, G., Casati, F., Kuno, H. and Machiraju, V. (2004): Web-Services: Concepts, Architectures and
Applications, Springer Verlag

Ali Arsanjani (2004): Service-oriented modeling and architecture. IBM Online article, 09 Nov 2004.

Bijay K. Jayaswal, Peter C. Patton (2006): Design for Trustworthy Software: Tools, Techniques, and
Methodology of Developing Robust Software, Prentice Hall.

Blaze, M., Feigenbaum, J. and Lacy, J. (1996): Decentralized trust management. In: Proceedings of IEEE
Conference on Security and Privacy.

Bonatti, P. A. and Olmedilla, D. (2005): Driving and monitoring provisional trust negotiation with
metapolicies. In: 6th IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY 2005), pages 14–23, Stockholm, Sweden, IEEE Computer Society.

BREIN Deliverable D4.1.2, Overall Architecture, 2008. Access: http://www.eu-
brein.com/index.php?option=com_docman&task=doc_view&gid=30&Itemid=31 [17.03.2009]

Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V., Pedrinaci, C. (2006): IRS-
III: A Broker for Semantic Web-Services based Applications. In: Proceedings of the 5th International
Semantic Web Conference (ISWC 2006).

Cabral, L., Domingue, J., Motta, E., Payne, T. R. and Hakimpour, F. (2004): Approaches to Semantic
Web-Services: An Overview and Comparison. In: Proceedings of the European Semantic Web
Conference.

Cardwell, L. (2005): AJAX – Bridging the Thin-Client Performance Gap. Access:
http://www.ironspeed.com/articles/AJAX-Bridging%20the%20Thin-
Client%20Performance%20Gap/Article.aspx [16.03.2009]

DAML Homepage: Releases of DAML-S / OWL-S. Access: http://www.daml.org/services/owl-s/
[16.03.2009]

Digital Object Identifier System. Access: http://www.doi.org/ [13.03.2009]

Domingue, J. and Fensel, D. (2008): Toward a Service Web: Integrating the Semantic Web and Service
Orientation, January 2008, IEEE Intelligent Systems

Drucker, P. (1973): Management: Tasks, Responsibilities, Practices. Harper & Row, New York.

Dublin Core Metadata Initiative. Access: http://dublincore.org/ [13.03.2009]

Dublin Core Meta-Data Initiative: Dublin Core - The Elements. Access:
http://dublincore.org/documents/usageguide/elements.shtml [16.03.2009]

ebPML BPEL. BPEL Meta-Model. Access: http://www.ebpml.org/bpel4ws.htm [10.04.2009]

Erl, T. (2005): Service-Oriented Architecture: Concepts, Technology, and Design, Prentice
Hall/PearsonPTR

Fielding, R. (2000): Architectural Styles and the Design of Network-based Software Architectures,
Dissertation, University of California.

http://www.active-endpoints.com/open-source-architecture.htm�
http://www.active-endpoints.com/open-source-architecture.htm�
http://www.w3.org/Submission/WSDL-S/�
http://www.eu-brein.com/index.php?option=com_docman&task=doc_view&gid=30&Itemid=31�
http://www.eu-brein.com/index.php?option=com_docman&task=doc_view&gid=30&Itemid=31�
http://www.ironspeed.com/articles/AJAX-Bridging the Thin-Client Performance Gap/Article.aspx�
http://www.ironspeed.com/articles/AJAX-Bridging the Thin-Client Performance Gap/Article.aspx�
http://www.daml.org/services/owl-s/�
http://www.doi.org/�
http://dublincore.org/�
http://dublincore.org/documents/usageguide/elements.shtml�
http://www.ebpml.org/bpel4ws.htm�

78

Flurry, G. (2007): Exploring the Enterprise Service Bus, Part 1: Discover how an ESB can help you meet
the requirements for your SOA solution, IBM Software Group. Access:
http://www.ibm.com/developerworks/library/ar-esbpat1 [17.03.2009]

Foster, I. and Kesselman, C. (2004). The Grid – Blueprint for a New Computing Infrastructure. Second
Edition, Morgan Kaufmann Publishers.

Foster, I., Kesselman, C., Tuecke, S. (2001): The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International J. Supercomputer Applications, 15(3)

Gartner Group (2008): Gartner Identifies the Top 10 Strategic Technologies for 2009. Access:
http://www.gartner.com/it/page.jsp?id=777212 [17.03.2009]

Globus OGSA, The Open Grid Services Architecture. Access: http://www.globus.org/ogsa/ [10.04.2009]

Google Gadgets Homepage. Access: http://www.google.com/ig/directory?hl=en&synd=open
[13.03.2009]

Hemingway, C.J. and Breu, K. (2003): From traditional to virtual organisation: implications for work unit
boundaries. In Proceedings of the Eleventh European Conference on Information Systems (Ciborra CU,
Mercurio R, de Marco M, Martinez M, Carignani A eds.), 778-787, Naples, Italy.

Hinkelmann, K.; Karagiannis, D.; Telesko, R. (2002): PROMOTE - Methodologie und Werkzeug zum
geschäftsprozessorientierten Wissensmanagement. In: Geschäftsprozessorientiertes Wissensmanagement,
Springer-Verlag

KMI, Knowledge Media Institute, IRS - Internet Reasoning Service. Access:
http://technologies.kmi.open.ac.uk/irs/ [16.03.2009]

Kruchten, P. (1995): Architectural Blueprints — The “4+1” View Model of Software Architecture. IEEE
Software 12 (6), pp. 42-50

Kühn et al. (2003): Enterprise Model Integration, In: Bauknecht, K.; Tjoa, A M. Quirchmayer, G. (Eds.):
Proceedings of the Fourth International Conference EC-Web 2003 – Dexa 2003, Prague, Czech Republic,
September 2003, LNCS 2738, Springer-Verlag, Berlin, Heidelberg, pp. 379-392.

Kühne, T. (2005): Understanding metamodeling. In: Proceedings of the 27th International Conference on
Software Engineering (ICSE 2005), 716-717

Larman C. (2005), UML 2 und Patterns angewendet – Objektorientierte Softwareentwicklung, mitp-
Verlag/Bonn, 2005, pp. 98ff.

Lee, J., Upadhyaya, S. J., Rao, H. R., and Sharman, R. (2005): Secure knowledge management and the
semantic web. Communications of the ACM 48, 12 (Dec. 2005), 48-54.

LOM, Learning Object Metadata. Access: http://en.wikipedia.org/wiki/Learning_object_metadata
[13.03.2009]

LOM, Draft Standard for Learning Object Metadata. Access:
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf [13.03.2009]

Maier, R. (2007): Knowledge Management Systems, Information and Communication Technologies for
Knowledge Management, Springer.

Mak, K. and Woitsch, R. (2005): Der Einsatz des prozessorientierten Wissensmanagementwerkzeuges
PROMOTE® in der Zentraldokumentation der Landesverteidigungsakademie, Schriftenreihe der
Landesverteidigungsakademie, 19/2005

Martin, D., Domingue, J., Brodie, M. and Leymann, F. (2007): Semantic Web-Services, Part 1. In: IEEE
Intelligent Systems

MATURE D1.1: Results of the Ethnographic Study and Conceptual Knowledge Maturing Model,
MATURE deliverable, April 2009

http://www.ibm.com/developerworks/library/ar-esbpat1�
http://www.gartner.com/it/page.jsp?id=777212�
http://www.globus.org/ogsa/�
http://www.google.com/ig/directory?hl=en&synd=open�
http://technologies.kmi.open.ac.uk/irs/�
http://en.wikipedia.org/wiki/Learning_object_metadata�
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf�

 79

MATURE D2.1: Model of pedagogical requirements and of supporting services of the PLME, MATURE
deliverable, April 2009

MATURE D3.1: Model of organizational requirements and of supporting services of the OLME,
MATURE deliverable, April 2009

MATURE D4.1: Definition of Maturing Services, MATURE deliverable, April 2009

MATURE D5.1: Infrastrucutre Testbed, MATURE deliverable, April 2009

MATURE D6.1: Requirements specification and Evaluation plan, MATURE deliverable (Draft), March
2009.

MATURE DoW: Description of Work, November 2007

Merrill, D. (2006). Mashups: The new breed of Web app, Access:
http://www.ibm.com/developerworks/xml/library/x-mashups.html [17.03.2009]

Mika, P., Oberle, D., Gangemi, A. and Sabou, M. (2004): Semantic Web-Services: Foundations for
service ontologies: aligning OWL-S to dolce. In: Proceedings of the 13th international conference on
World Wide Web, ACM Press

Milke, J.–M., Schiffers, M., Ziegler, W. (2006): Virtuelle Organisationen in Grids: Charakterisierung und
Management, PIK Praxis der Informationsverarbeitung und Kommunikation, 2006, Saur–Verlag.

Moran, M., Kopecky, J. and Mocan, A. (2005): WSDL-S (LSDIS and IBM) & WSMO, WSMO Working
Group Presentation. Access: http://www.wsmo.org/papers/presentations/WSDL-S.ppt [16.03.2009]

OASIS (2006): Reference Model for Service Oriented Architecture 1.0, OASIS Standard. Access:
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html [16.03.2009]

OASIS BPEL, BPEL Specification. Access: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-
draft.html [16.03.2009]

OASIS Homepage. Access: http://www.oasis-open.org/home/index.php [17.03.2009]

OASIS SAML, SAML V2.0 Specification. Access: http://saml.xml.org/saml-specifications [17.03.2009]

OASIS UDDI, UDDI Specifications. http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
[16.03.2009]

OCML, Operational Conceptual Modelling Language Homepage. Access:
http://technologies.kmi.open.ac.uk/ocml/ [10.04.2009]

OMG, Model Driven Architecture. Access: http://www.omg.org/mda/ [16.03.2009]

OMG MOF, OMG's Meta Object Facility Homepage. Access: http://www.omg.org/mof/ [16.03.2009]
OMG UML, UML Specification v2.2, Accessible: http://www.omg.org/technology/documents/formal/uml.htm,
[10.04.2009]

Operational Conceptual Modelling Language. Access: http://technologies.kmi.open.ac.uk/ocml/
[16.03.2009]

O'Reilly, T. (2005): What Is Web 2.0 - Design Patterns and Business Models for the Next Generation of
Software. Access: http://oreilly.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1
[16.03.2009]

OWL-S Specification. Access: http://www.daml.org/services/owl-s/1.1/ [16.03.2009]

Polleres, A., Lausen, H., and Lara, R. (2006): Semantische Beschreibung von Web-Services. In: Semantic
Web - Wege zur vernetzten Wissensgesellschaft. Springer

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier, C., Bussler,
Ch., Fensel, D. (2005): Web-Service Modeling Ontology, Applied Ontology, pp. 77 – 106

SAML Specification. Access: http://saml.xml.org/saml-specifications [17.03.2009]

http://www.ibm.com/developerworks/xml/library/x-mashups.html�
http://www.wsmo.org/papers/presentations/WSDL-S.ppt�
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html�
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html�
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html�
http://www.oasis-open.org/home/index.php�
http://saml.xml.org/saml-specifications�
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm�
http://technologies.kmi.open.ac.uk/ocml/�
http://www.omg.org/mda/�
http://www.omg.org/mof/�
http://technologies.kmi.open.ac.uk/ocml/�
http://oreilly.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1�
http://www.daml.org/services/owl-s/1.1/�
http://saml.xml.org/saml-specifications�

80

Selvage. et al (2008): Exploring the Enterprise Service Bus, Part 3: Four approaches to implementing a
canonical message model in an ESB. Access:
http://www.ibm.com/developerworks/architecture/library/ar-esbpat3/ [13.02.2009]

Shibboleth, Shibboleth® Enabled Applications and Services. Access:
https://spaces.internet2.edu/pages/viewpage.action?pageId=11484 [17.03.2009]

SOA4All D1.1.1 Design Principles for a Service Web v1, SOA4All Deliverable, August 2008. Access:
http://www.soa4all.eu/resources.html?func=startdown&id=25 [16.03.2009]

Solazzo, T., Handschuh, S., Staab, S., and Frank, M. (2002): Semantic Web-Service Architecture -
Evolving Web-Service Standards toward the Semantic Web. In: Proceedings of the 15th International
FLAIRS Conference. Pensacola, Florida, May 16-18, 2002. AAAI Press

Stachowiak, H. (1973): Allgemeine Modelltheorie. Springer.

Stevens, M.: The Benefits of a Service-Oriented Architecture. Access:
http://www.developer.com/design/article.php/1041191 [16.03.2009]

Stollberg, M., Hepp, M. and Fensel, D. (2007): Semantic Web-Services – Realisierung der SOA Vision
mit semantischen Technologien. SWS – MKE conference

Text Encoding Initiative. Access: http://www.tei-c.org/index.xml [13.03.2009]

W3C HTTP, HTTP - Hypertext Transfer Protocol. Access: http://www.w3.org/Protocols/ [16.03.2009]

W3C OWL. Access: http://www.w3.org/2004/OWL/ [10.04.2009]

W3C SAWSDL, Semantic Annotations for Web-Services Description Language Working Group
Homepage. Access: http://www.w3.org/2002/ws/sawsdl/ [12.03.2009]

W3C SOAP, SOAP Version 1.2. Access: http://www.w3.org/TR/soap/ [16.03.2009]

W3C WSDL, Web-Services Description Language (WSDL) 1.1. Access: http://www.w3.org/TR/wsdl
[16.03.2009]

Warner, C. and Crupi, J. (2008): Enterprise Mashups Part II: Why SOA Architects Should Care, The
SOA Magazine. Access: http://www.soamag.com/I21/0808-1.asp [17.03.2009]

Woitsch, R. (2004): Process Oriented Knowledge Management: A Service Based Approach. PhD Thesis,
University of Vienna, July 2004

Woitsch, R. and Leutgeb, A. (2008): The BREIN-Roadmap with PROMOTE®: A Use-Case of a Service-
Based Knowledge Management Approach. In: Proceedings of I KNOW ’08, Graz, Austria

Woitsch, R., Karagiannis, D., Fill, H.-G. and Blazevic, V. (2007): Semantic Based Knowledge Flow
System in European Home Textile: A Process Oriented Approach with PROMOTE. In: Proceedings of I
KNOW '07, Graz, Austria

Woitsch, R. and Utz, W. (2006): Roadmap to Akogrimo Convergence, A Sample of Process Oriented
Knowledge Management with PROMOTE. In: Proceedings of I KNOW '06, Graz, Austria

WS-I, Web-Services Interoperability Organisation (2006): Basic Profile Version 1.1. Access:
http://www.ws-i.org/Profiles/BasicProfile-1.1.html [16.03.2009]

WS-I, Web-Services Interoperability Organisation (WS-I) homepage. Access: http://www.ws-i.org/
[10.04.2009]

XML-RPC, XML-RPC Homepage. Access: http://www.xmlrpc.com/ [10.04.2009]

1

http://www.ibm.com/developerworks/architecture/library/ar-esbpat3/�
https://spaces.internet2.edu/pages/viewpage.action?pageId=11484�
http://www.soa4all.eu/resources.html?func=startdown&id=25�
http://www.developer.com/design/article.php/1041191�
http://www.tei-c.org/index.xml�
http://www.w3.org/Protocols/�
http://www.w3.org/2004/OWL/�
http://www.w3.org/2002/ws/sawsdl/�
http://www.w3.org/TR/soap/�
http://www.w3.org/TR/wsdl�
http://www.soamag.com/I21/0808-1.asp�
http://www.ws-i.org/Profiles/BasicProfile-1.1.html�
http://www.ws-i.org/�
http://www.xmlrpc.com/�

 81

Annex A Design Studies – Integration Relevant Aspects
This section provides an overview of the services and the integration relevant aspects gathered for each design study. Table 9 depicts the template that was
filled out by each design study leader. Further details on the design studies can be found in D2.1 (for PLME related design studies), D3.1 (for OLME related
design studies) and D6.1 for an overview on the design studies.

Table 9: Service Integration Template for the Design Studies

Service Name Service Description
(non-technical)

Technical Service
Specification

MATURE
Service Type

Technical
Service Type

Granularity Input Output Interaction

1 Name of the
Service

Service Description
understandable for
business users
(technical non-savvy
user)

Technical
specification of
service – architecture,
technology used,
service structure

[OLME
Service,
PLME
Service,
Maturing
Service] –
Multiple
selection
possible

[UI Layer,
Logic Layer,
Data Layer] –
Multiple
selection
possible

Atomic,
Service
cluster[specif
ication of
sub-services
necessary
using IDs],
Composite
services
[specification
of sub-
services and
logical flow
necessary] –
based on
SOMF 2.08

If feasible,
technical
specification
of required
input for
service (ideally
Web-Service
message
specification
or data types)

If feasible,
technical
specification
of required
output for
service
(ideally Web-
Service
message
specification
or data types)

Input/Outp
ut relation
to other
service
available
in list
(mention
ID of
service)

8 Ali Arsanjani (2004): Service-oriented modeling and architecture. IBM Online article, 09 Nov 2004.

82

Annex A.1 Design Study “DS1: OLMEWiki” Service Collection

Responsible Partner: TUG

Table 10 specifies the identified services in detail.

Table 10: Design Study “DS1: OLMEWiki” Service Collection

Service Name Service Description
(non-technical)

Technical Service
Specification

MATURE
Service Type

Technical
Service Type

Granularity Input Output Interaction

1 KnowMiner
Service

KnowMiner provides
a framework of
services for
knowledge discovery
from unstructured
content. This includes
meta-data extraction,
knowledge
relationship
discovery as well as
indexing, clustering
and classification
tasks.

This service is
designed as a set of
back-end services, so
it can be easily
integrated in various
types of services and
applications. It is
permanently improved
and expanded by
TUG.

Maturing
Service

Data Framework Unstructured
Content (Text)

Meta-data,
Association
s, Classes,
Clusters,
Key Terms

2 Maturity
Analysis Services

A set of services that
provides indicators
which are related to
the level of maturity
of a certain
knowledge artefact.
These services will
be available in the
sectors content,
semantic and
processes.

These services
implement several
metrics for the
maturity level of a
knowledge artefact. In
addition, the analysis
services provide
graphical indicators to
refer to the current
maturity of a certain
artefact.

Maturing
Services

UI, Logic Framework Content,
structure,
processes

Maturity
indicator

1

3 Consolidation
Services

According to the SER
model, during the
reseeding phase the
task of consolidation

The task of
consolidation covers
reflection services,
collaboration services

OLME Data, Logic Framework Content,
Semantics,
Processes

Content,
Semantics,
Processes

(consolidate

 83

is required. The
consolidation
services provide
support for the task of
consolidation of
(semantic) structures,
content and processes

and services for
revision of knowledge
artefacts.

d)

4 Information
Retrieval Service

This service provides
a search interface
which helps the user
to aggregate
information related to
a certain topic
without the need to
use multiple search
engines.

Using different search
facilities of various
search engines (yahoo,
YouTube, Flickr, local
and shared databases
etc) this service
provides a combined
interface.

PLME Data Framework Keywords List of data 6

84

Annex A.2 Design Study “DS2: Dialogue Games for Ontology Maturing” Service Collection

Responsible Partner: LTRI/FZI

Development of a knowledge maturing dialogue game through mashing up SOBOLEO and Interloc, to examine: the role of dialogue in knowledge maturing,
knowledge maturing as a social learning process, the technical realisation of ‘loosely coupling’ two related technologies and the application of this mashup in
AP scenarios. Table 11 specifies the identified services in detail.

Table 11: Design Study “DS2: Dialogue Games for Ontology Maturing” Service Collection

Service Name Service Description
(non-technical)

Technical Service
Specification

MATURE
Service Type

Technical
Service Type

Granularity Input Output Interactio
n

1 SOBOLEO
Ontology Editor
Service

The ontology editor
service allows
collaborative
creation, update,
maintenance, and
operationalization of
a SKOS model

The editor is an AJAX
application (based on
Google Webtoolkit,
i.e. implemented in
Java) that allows
creation, update,
maintenance, and
operationalization of a
SKOS model for
multiple users

PLME, OLME UI, Data Atomic Domain Expert
Knowledge;
SKOS
ontology
description

SKOS
ontology
description;
logging of all
operations
and chat
messages as
text file

2 InterLoc
Dialogue Game
Editor Service

The dialogue game
editor service allows
to modify the textual
contents of the Menu
(move categories +
openers) and
interaction rules

 PLME, OLME UI, Data Atomic XML file XML file

3 InterLoc
Dialogue Game
Interface Service

The InterLoc
Dialogue Game
interface service
allows for guided
dialogue games for
multiple users.

The Dialogue Game
interface is a
collaborative Java
application (using Sun
Java Webstart) with an
HTML/CSS based UI
using XMPP protocol
for message exchange
between the users.

PLME, OLME UI Atomic User input;

Pre-defined
move
categories &
openers from 2
as XML file;

Dialogue
protocol as
HTML file

2

 85

Annex A.3 Design Study “DS3: Interacting Widgets” Service Collection

Responsible Partner: UPB

Development of a widget mashup with interacting widgets on a persistent layer and an additional integration layer. Table 12 specifies the identified services in
detail.

Table 12: Design Study “DS3: Interacting Widgets” Service Collection

Service Name Service Description
(non-technical)

Technical Service
Specification

MATURE
Service Type

Technical
Service Type

Granularity Input Output Interactio
n

1 Widget Hosting
and
Administration

The widget server
allows uploading of
user-created content
(widgets), integrating
them with the
existing widget
infrastructure.

A function of the web
server, an archived
widget is uploaded
and installed
according to the
included XML
configuration.

PLME, OLME UI, Logic, Data Atomic Widget
Archive (ZIP)

 1.2

1.2 Widget
Discovery /
Advertising

The server can be
queried for available
widgets to allow for
easy, automated
integration into third-
party web pages or
applications.

Regular HTTP
request, returns XML
of all installed and
public widget types.

PLME, OLME Logic, Data Atomic HTTP Request XML
containing
widget
information

1.1

1.3 Widget
Communications

This service handles
widget
communication and
storage.

Widgets communicate
exclusively via AJAX
(DWR framework),
using the server and
its database as a relay.
Internally,
communication is
managed through a
“channel” metaphor,
linking related widgets
together on one or
more channels.

PLME, OLME Logic, Data Service
Cluster

- Cha
nnel
Management

- Wid
get Yellow
Pages

- Wid
get Real-

AJAX Request Success /
Error /
requested
data

1.5

86

Time
Messages

- Wid
get Data Pool
Storage

1.4 Logging In addition to the
widgets' own
information being
persistently stored,
this service allows
for on-the-fly
logging of
knowledge-building
data (e.g. user
interactions) while
the widgets are in
use.

Logging calls are
made through AJAX
and initiated on
demand by the widget.
Logs are stored in the
server database.

PLME, OLME Data Atomic AJAX Request Success /
Error

1.5

1.5 Data Export This service is an
interface to external
clients, preparing and
exporting knowledge
and usage data in
various formats.

The service generates
data from the server's
database and exports
via a generalized
interface.

OLME Logic, Data Atomic Request
(HTTP, RPC,
...)

Formatted
and collated
data

1.4, 1.3,
Knowledge
Bus

1.6 Proxy This service allows
Widgets the
communication to
other services which
is necessary as
browsers permit
cross-scripting

The proxy allows a
http communication
channel through the
server

PLME, OLME Data Atomic HTTP Request HTTP
Response

 87

Annex A.4 Design Study “DS5: OLMEntor” Service Collection

Responsible Partner: FHNW

The OLMEntor design study develops a demonstrator for knowledge maturing from an organisational point of view. The goal is to examine the usefulness of
the intended support by:

1. providing relevant knowledge artefacts (e.g. documents or information on experts) automatically depending on tasks (process steps) to be performed

2. providing relevant knowledge artefacts (e.g. documents or information on experts) automatically based on (additional) information gathered through
process execution

3. providing the possibility of rating the provided artefacts and using the rates to rank the knowledge artefacts with respect to relevance

4. applying knowledge maturing services to automat annotation of various knowledge artefacts (blog, wiki, notes, documents etc.)

5. making suggestions for learning (e.g. learning/reading a document, talking to an expert, attend e-learning course, participate in community of practice
etc.)

Table 13 specifies the identified services in detail.

Table 13: Design Study “DS5: OLMEntor” Service Collection

Service Name Service Description
(non-technical)

Technical Service
Specification

MATURE
Service Type

Technical
Service Type

Granularity Input Output Interactio
n

1 Case Based
Reasoning (CBR)
Service

The case based
reasoning service
provides historical
(closed) cases related
to tasks (process
steps) and cases in
process

The CBR service uses
ontologies and
application
information

OLME, PLME Logic, Data Atomic

Context
relevant data
and task
description

List of
matching
historical
(closed) cases

1.2 Retrieval Service Service for retrieving
knowledge artefacts
(e.g. documents or
information on
experts) depending
on context
information

The retrieval service
uses ontologies and
application
information

OLME, PLME Logic, Data Atomic task
description

List of
knowledge
artefacts

88

1.3 Case Retrieval
Service

The case retrieval
service provides
detailed description
about the case

The service retrieve
additional information
about the case, like
who has performed
which task, which data
was set when

OLME, PLME Logic, Data Atomic Case id Information
about the
case

1.4 Work list handler The work list handler
provides a graphical
user interface with
which the human
worker interacts.
Depending on the
case different
decision support can
be shown. (S)he can
log in. After it, (s)he
gets a list of her/his
tasks. Automatically
the Retrieval Service
is called and (s)he
gets all relevant
information related
to the task, e.g. a list
of experts, historical
cases, documents,
websites or other
knowledge-artefacts

Adaptive graphical
user interface, Ajax

PLME UI Atomic 1, 1.2, 1.3,
1.5, 1.6

1.5 Storing Service The storing service is
responsible to store
knowledge-artefacts

The service provides a
user interface to
upload a new artefact
(file, website) and

OLME, PLME UI, Logic, Data Atomic Knowledge-
artefacts

True, if
storing was
successful

 89

stores the knowledge-
artefacts and their
metadata

1.6 Adaptive
Workflow
Engine

The workflow engine
is responsible for the
execution of the
structured part of the
process and also for
the assignment of
tasks, based on the
case (e.g. difficulty
of a task)

The service controls
the execution of a
workflow.

OLME Logic, Data Atomic Workflow
model

 1.4, 1.7

1.7 RHEA RHEA is a rule
engine, which can be
integrated in an
internet based
workflow engine.
RHEA supports the
adaptivity of
knowledge intensive
process parts using
rules.

For the execution of
the knowledge-
intensive process part,
the rule engine,
RHEA, is invoked as a
Web-Service, which
executes rules.
Depending on the
context relevant data
flexible resource
allocation, decision
support, constraint
checking or planning
is supported.

OLME Logic, Data Atomic Rule set,
Context-
relevant data

Consequence
s of the fired
rules

1.6

1.8 ATHENE The modelling
environment is used
for modelling
knowledge artefacts
(e.g. adaptive process
models)

For modelling a
knowledge artefacts
ATHENE is used.
ATHENE is a
modelling
environment which
can be accessed via
browser. The models
are stored using
ontologies.

OLME, PLME UI, Logic, Data Atomic Workflow
model

1.9 Monitoring Observe the The monitoring OLME, PLME UI, Logic, Data Atomic Workflow Workflow

90

service availability of
knowledge artefacts
related to tasks and
the behaviour and
interaction of users

service observes the
user during his tasks
and tries to figure out
if knowledge artefacts
are available to help
the user.

execution,
Feedback

model

2.0 Assembling
service

Various knowledge
artefacts stored in the
knowledge base are
assembled
automatically (e.g.
the generation of a
report)

The service assembles
needed artefacts for
and merges them, e.g.
for the generation of a
report

OLME, PLME Logic, Data Atomic Artefacts Artefact

2.1 Share service Based on the cases a
user worked on, new
information will be
automatically sent to
users for whom it
might be useful

The knowledge base
links new artefacts
with existing ones and
is therefore able to
detect related artefacts

OLME, PLME UI, Logic, Data Atomic Artefacts Artefact 1.9

2.2 Mining Service Mining of process
instances to identify
individual and
organisational goals.

Monitoring whether
tasks have been
change or added.
Mining of it and adapt
the processes.

OLME,
(PLME)

Logic, Data Atomic Use, changing,
managing of
tasks.

Suggestions
for matured
workflows

1.9

 91

Annex A.5 Design Study “DS6: APOSDLE” Service Collection

Responsible Partner: TUG
Table 14 specifies the identified services in detail.

Table 14: Design Study “DS6: APOSDLE” Service Collection

Service
Name

Service Description
(non-technical)

Technical Service
Specification

MATURE
Service
Type

Technical
Service
Type

Granularity Input Output Interaction

1 Associative
Network
Service

This service facilitates the
representation of associative
networks. In order to search
for information it provides
retrieval mechanisms based
on spreading activation
mechanisms.

This service is developed as
stand-alone service and is
permanently further developed
at TUG. In order to create
meaningful associations
between nodes an additional
service providing the
extraction of meta-data is
required. Network
representation is based on
document (textual) similarity
and on concept (ontological)
similarity measures.

Maturing
Service

Logic, Data Atomic Nodes
(Documents,
Persons…),
Associations
between
Nodes

Nodes
which are
associated
to a given
node

1, 3, 4, 5, 6

2 User Profile
Service

These services are
responsible for the gathering
and representation of user
related data and inferences
based on this representation.
This facilitates the context
aware behaviour of the
system in particular context
sensitive information
retrieval and task
recognition.

The user profile services are a
set of services covering
services for user data
representation as well as
services for gathering user
data and retrieval of user
related data, and inference
mechanisms.

Maturing
Services

Data Framework User actions
and
attributes

Static and
dynamic
user data

1, 2

3 Domain
Modelling
Service

Services for informal
modelling of structured data
by non-expert users.

These services facilitate the
graphical or textual creation
and revision of models

OLME UI, Logic,
Data

Framework (semantic)
models

92

Annex A.6 Design Study “DS7: Kasimir” Service Collection

Responsible Partner: SAP
Kasimir provides a framework for integrated and collaborative task management. The design study investigates a special feature of Kasimir, namely task
patterns which are especially interesting in the context of process knowledge maturing. Table 15 specifies the identified services in detail.

Table 15: Design Study “DS7: Kasimir” Service Collection

Service Name Service Description
(non-technical)

Technical Service
Specification

MATURE
Service Type

Technical
Service Type

Granularity Input Output Interactio
n

1 STMF (Semantic
Task
Management
Framework)

The STMF offers a
number of task
management-related
functions for
developers of
personal information
management /
personal task
management
applications.

STMF service
implemented in Java,
deployed as OSGI
service in the
Nepomuk Social
Semantic Desktop,
invoke exposed STMF
service interface via
Java, XML/RPC or as
Web-Service.

OLME, PLME Logic, Data Atomic
service

User task data
passed on from
service #2 or
request for
repository data
(again from
service #2)

Persistent
storage of
data in RDF
repository or
data read
from
repository
and passed on
to service #2

2

2 Kasimir Service for
manipulation of task
information and
further task-related
personal information
by users.

Swing GUI OLME, PLME UI, Logic Service
cluster (uses
service #1)

User
interaction,
data from
repository

Graphical
representatio
n of task data,
data to be
written to
repository
(via service
#1)

User, 1

 93

Annex A.7 Design Study “DS8: SOBOLEO” Service Collection

Responsible Partner: FZI
Table 16 specifies the identified services in detail.

Table 16: Design Study “DS8: Soboleo” Service Collection

Service Name Service Description
(non-technical)

Technical Service
Specification

MATURE
Service Type

Technical
Service Type

Granularity Input Output Interactio
n

1 SOBOLEO
Ontology Editor
Service

The ontology editor
service enables
collaborative
creation, update,
maintenance, and
operationalization of
a SKOS model

The editor is an AJAX
application (based on
Google Webtoolkit,
i.e. implemented in
Java) that allows
creation, update,
maintenance, and
operationalization of a
SKOS model for
multiple users

PLME, OLME UI, Data Atomic Domain
Expert
Knowledge;
SKOS
ontology
description

SKOS
ontology
description;
logging of all
operations and
chat messages
as text file

11

2 SOBOLEO
Concept Adding
Service

Allows users to add a
new concept with a
specific preferred
label as prototypical
concept to the
ontology

Allows authenticated
users to add a new
concept via an HTTP
request. The preferred
label is passed
parameter. If such a
concept does not exist
yet, a new one is
created and put as
narrower concept of
prototypical concept.

 Data Atomic HTTP request
with user
name,
password, and
preferred
label

Success
message

1, 11

3 SOBOLEO
Ontology Export
Service

The ontology export
service provides an
output of the current
state of the ontology

Provides via HTTP
request a dump of the
current state of the
ontology in SKOS
format with turtle
notation

 Data Atomic HTTP request Ontology in
SKOS format
in turtle
notation

94

4 SOBOLEO
Ontology &
Resource
Browser

The Ontology &
Resource Browser
enables the user to
explore the current
state of the ontology,
persons and the
annotated web
resources.

For each concept,
provides a web page
with the description of
the concept, links to
related concepts and
information about the
most recent
annotations. Further it
shows information
about the persons most
connected to the
concept.

 UI Atomic HTTP request
+ concept id
if needed

Web page
describing
concept and
related
resources and
persons.

11

5 Atom Feed Provides machine
readable information
about the newest
annotations for a
particular concept (or
the entire ontology)

An ATOM feed with
the most current
annotations. A
parameter allows the
user to receive only the
annotations for
particular concepts.

 Data Atomic HTTP request
+ concept id
if needed

ATOM feed

6 SOBOLEO
Annotation
Service

enables users to save
bookmarks of web
resources and to
annotate them with
concepts from the
ontology or with
arbitrary terms that
are automatically
added to the ontology

is an AJAX tool that
enables the users to
save the current web
page as bookmark and
to annotate it with
concepts from the
ontology or with
arbitrary terms that are
automatically added to
the ontology as
prototypical concept. It
can be stored as
bookmark within the
browsers that opens a
popup with url and
title filled out for the
current web page.

PLME, OLME UI Atomic HTTP request
with
document title
+ url

 1, 11

 95

7 SOBOLEO
Annotation
Adding Service

Allows to add an
annotation that is
made from another
application than
SOBOLEO but with
the same ontology

Allows for
authenticated users to
add an annotation, e.g.
done with another
annotation tool that
uses the same
ontology, via HTTP
request. URL and title
of the annotated
document and the
concept labels the
document is annotated
are passed as
parameters

 Data Atomic HTTP request
with user
name,
password,
document url,
title, and
concept labels
to annotate
with

Success
message

8 SOBOLEO
Semantic Search
Service

allows users to
search for annotated
web resources and
for persons

Provides a web page
that enables users to
enter a search string in
order to find annotated
web resources and for
persons.

 UI, Logic search string web page with

result set of
annotated web
resources and
persons and
suggestions
for query
relaxations or
refinements

11

96

8.1 SOBOLEO Web
resources Search
Service

allows users to
search for annotated
web resources

Provides a web page
that enables users to
enter a search string in
order to find annotated
web resources. The
search string is
analyzed for
occurrence of concept
labels. Then the
service looks for
indexed web resources
annotated with these
concept labels or with
narrower ones. This
result is combined
with a full text search
over all annotated web
resources. Query
refinements and
relaxations are also
proposed.

 UI, Logic Atomic search string web page with
result set of
annotated web
resources and
suggestions
for query
relaxations or
refinements

11

8.2 SOBOLEO
People Search
Service

users can search for
who might be
knowledgeable about
a specific topic

The SOBOLEO
People Search Service
enables users to enter a
search string in order
to find other persons
for a specific topic
based on their
activities. The search
string is analyzed for
occurrence of concept
labels. The search
engine looks for users
who already used these
concepts or narrower
ones (e.g. for
annotation)

 UI, Logic Atomic search string web page with
result set of
users and
suggestions
for query
relaxations or
refinements

 97

9 SOBOLEO
Logging Service

logging of user
activities

logging of all user
activities with
timestamp within a
text file

 Atomic activity
details

log as text file

10 SOBOLEO
Statistics Service

provides an
aggregated view of
the activities of each
user

provides an aggregated
view of the activities
of each user; i.e. count
an activity is
performed

 Logic Atomic HTTP request comma
separated list
of activities
per user

9

98

Annex B Service Fact Sheet
This section presents the service fact sheet that was used to specify the already existing services and to
identify services to be integrated for the first prototype of the MATURE system. The service fact sheet
consists of three parts:

1. Service Requirement Fact Sheet: Provides an high level view on the service and the implemented
features.

2. Service Solution Fact Sheet: Provides a description of the selected implementation approach.

3. Service Implementation Report: Provides information about the implementation status of each
feature, dependencies on technologies or standards and information on how the service was tested
(on which platform, which test input / output).

The template is presented in the following.

 99

1. Service Requirement Fact Sheet
<Service Name>

Service
Overview9

<it is a brief description of the service underlining what high level
functionalities will be available>

Features
Summary10

<it provides the description of each service feature, we could associate
a feature to a method of the service>

<Feature 1> <Describe the feature in term of what it does. If it is associated to a
method details about input parameters and results should be provided>

<Feature 2>

…

<Feature N>

Comments11:

<it provides optionally graphics, comments or references to the full
service description>

9 Service Overview is a brief description of the service underlining what high level functionalities will be available
10 Feature Summary provides a description of each service feature (public method)
11 Comments might be provided like graphics, references to the full service description etc.

100

2. Service Solution Fact Sheet
<Service Name>

Solution
Overview12

<it is a brief description of the selected implementation approach>

Reviewer
Comments13:

<it provides optionally the possibility to state comments, hints and
advises from an experienced MATURE service developers regarding the
above approach>

12 Solution Overview is a brief description of the selected implementation approach
13 Comments might be filled in by an experienced programmer to advise or provide hints

 101

3. Service Implementation Report
<Service Name>

Implementation
Status14

<For each feature provides info about the implementation status
1. design available -> link, copy or attached preliminary sequence

and class diagrams
2. interface available -> link, copy or attached description of

interface
3. implementation started -> start-, end-date of implementation
4. implementation completed -> code available in CVS tested ->

reference to the final code>

<Feature 1>

…

<Features N>

Dependencies15 <here it should be clarified which technologies or standards the
service depends on.>

<Technology 1> <For example WSRF.NET, GT4 core or a feature provided by a specific
OS: a brief description of the technology should be provided with
reference to find out detailed information>

…

<Technology N>

Tested
Platform16

<describes on which OS the service has been tested>

<Platform 1> <provides information about the results of testing. If some specific
setting should be done, it has to be described here. If the testing has
not been successfully, it should be outlined the problem that has to be
faced (if identified)>

…

<Platform N>

Test
Input/Output

<provides test inputs and outputs for each feature>

14 This is an optional description of the service implementation:

1. design available -> link, copy or attached preliminary sequence and class diagrams
2. interface available -> link, copy or attached description of interface
3. implementation started -> start-, end-date of implementation
4. implementation completed -> code available in CVS
5. tested -> reference to the final code

15 Dependencies clarify which technologies or standards the service depends on. For example WSRF.NET, GT4 core
or a feature provided by a specific OS: a brief description of the technology should be provided with reference
to find out detailed information

16 Tested platforms describes on which OS the service has been tested. Further the test settings or problems that
have been faced should be outlined.

102

<Service Name>

<Feature 1> <provides sample input and output for each feature for testing
reasons>

…

<Feature N>

 103

Annex C MATURE Message Model
This annex introduces the first version of the MATURE Message Model. Table 17 depicts the WSDL
interface implementing the first version of the MATURE Message Model.

Table 17: WSDL implementing the MATURE Message Model (First Version)
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:mature="http://www.boc-eu.com/mature/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="MATURE"
 targetNamespace="http://www.boc-eu.com/mature/">
 <wsdl:types>
 <xsd:schema targetNamespace="http://www.boc-eu.com/mature/">
 <xsd:element name="search">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="searchString"
type="xsd:string" maxOccurs="1" minOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="searchResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="weburl" type="xsd:anyURI" />
 <xsd:element name="weburllist"
type="mature:weburl"> </xsd:element>
 <xsd:element name="content"
type="xsd:string"></xsd:element>
 <xsd:element name="conceptlist"
type="mature:concept"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="weburl">
 <xsd:sequence maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="weburl"
type="xsd:anyURI"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="concept">
 <xsd:sequence maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="concept"
type="xsd:string"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="maturing">
 <xsd:complexType>
 <xsd:sequence>

 <xsd:element name="fulltextcontentString"
type="xsd:string"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="maturingResponse">
 <xsd:complexType>

104

 <xsd:sequence>
 <xsd:element
name="readabilityscoreintarray" type="mature:readabilityscore"></xsd:element>
 <xsd:element name="conceptlabelstring"
type="xsd:string"></xsd:element>
 <xsd:element name="tagsetstringarray"
type="mature:tagset"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="readabilityscore">
 <xsd:sequence maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="readabilityScore"
type="xsd:string"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tagset">
 <xsd:sequence maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="tagset"
type="xsd:string"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="pageranking">
 <xsd:complexType>
 <xsd:sequence>

 <xsd:element name="weburlreadability"
 type="mature:weburlreadability">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="pagerankingResponse">
 <xsd:complexType>
 <xsd:sequence>

 <xsd:element name="orderedweburllist"
type="mature:weburl"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="weburlreadability">
 <xsd:sequence maxOccurs="unbounded" minOccurs="1">
 <xsd:element name="weburl" type="xsd:anyURI"
maxOccurs="1" minOccurs="1"></xsd:element>
 <xsd:element name="readabilityscore"
type="mature:readabilityscore" maxOccurs="1" minOccurs="1"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="storage">
 <xsd:complexType>
 <xsd:sequence>

 <xsd:element name="content"
type="xsd:string"></xsd:element>
 <xsd:element name="weburl"
 type="xsd:anyURI">
 </xsd:element>

 105

 <xsd:element name="conceptlist"
 type="mature:concept">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="storageResponse">
 <xsd:complexType>
 <xsd:sequence>

 <xsd:element name="statusmessage"
type="xsd:boolean"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
</wsdl:types>
<wsdl:message name="searchRequest">
<wsdl:part element="mature:search" name="input"/>
</wsdl:message>
<wsdl:message name="searchResponse">
<wsdl:part element="mature:searchResponse" name="output"/>
</wsdl:message>
 <wsdl:message name="maturingRequest">
 <wsdl:part name="input" element="mature:maturing"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="maturingResponse">
 <wsdl:part name="output" element="mature:maturingResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="pagerankingRequest">
 <wsdl:part name="input" element="mature:pageranking"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="pagerankingResponse">
 <wsdl:part name="output"
element="mature:pagerankingResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="storageRequest">
 <wsdl:part name="input" element="mature:storage"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="storageResponse">
 <wsdl:part name="output" element="mature:storageResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:portType name="MATURE">
<wsdl:operation name="search">
<wsdl:input message="mature:searchRequest"/>
<wsdl:output message="mature:searchResponse"/>
</wsdl:operation>
 <wsdl:operation name="maturing">
 <wsdl:input message="mature:maturingRequest"></wsdl:input>
 <wsdl:output message="mature:maturingResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="pageranking">
 <wsdl:input message="mature:pagerankingRequest"></wsdl:input>
 <wsdl:output message="mature:pagerankingResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="storage">
 <wsdl:input message="mature:storageRequest"></wsdl:input>
 <wsdl:output message="mature:storageResponse"></wsdl:output>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="MATURESOAP" type="mature:MATURE">

106

 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="search">
 <soap:operation
 soapAction="http://www.boc-eu.com/mature/search" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="maturing">
 <soap:operation
 soapAction="http://www.boc-eu.com/mature/maturing" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="pageranking">
 <soap:operation
 soapAction="http://www.boc-eu.com/mature/pageranking" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="storage">
 <soap:operation
 soapAction="http://www.boc-eu.com/mature/storage" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="MATURE">
<wsdl:port binding="mature:MATURESOAP" name="MATURESOAP">
<soap:address location="http://www.boc-eu.com/mature/"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

 107

Annex D

Knowledge Item Meta Data
This Annex provides details on the first version of the knowledge item meta data format. This format will
be refined for the final version of this deliverable. Mature specific parameters are orange highlighted.

Table 18 presents details about the General Tag that describes the knowledge item as a whole.

Table 18: Knowledge Item Meta-Data - General Tag

General Tag

Nr Name Description Value space Datatype Example

1.1 Identifier Unique label for the
knowledge item

1.1.1 Catalogue Name of the
identification scheme

 “URI”

1.1.2 Entry Value of the identifier.

1.2 Title Name given to this
knowledge item.

1.3 Language The primary language
used within this
knowledge item.

1.4 Description A textual description
of the content of this
knowledge item.

1.5 Keyword A keyword of phrase
describing the topic of
this knowledge item.

1.6 Structure Underlying structure of
this knowledge item.

atomic: an object is
indivisible

collection: a set of
objects with no
specified
relationship
between them

networked: a set of
objects with
relationships that
are unspecified.

hierarchical: a set
of objects whose
relationships can be
represented by a
tree structure.

linear: a set of
objects that are
fully ordered.

108

Table 19 presents details about the lifecycle tag that describes features related to the history and current
state of the knowledge item and those who have affected this knowledge item during its evolution. To
include also MATURE specific aspects, the maturity level has been included as an attribute.

Table 19: Knowledge Item Meta-Data - Lifecycle Tag

Lifecycle Tag

Nr Name Description Value space Datatype Example

2.1 Version The edition of this
knowledge item.

2.2 Status The completion status
of this learning object.

draft

final

revised

2.3 Contribute Entities that have
contributed to the state
of this knowledge item

2.3.1 Role Describes the kind of
contribution

Author

Publisher

Unknown

Initiator

Terminator

Validator

Editor

Graphical
designer

Technical
implementer

Content provider

Technical
validator

Educational
validator

Script writer

Instructional
designer

Subject matter
expert

2.3.2 Entity Information about the
contributing entity.

2.3.3 Date Date of the
contribution

2.4 Maturity
Level

Information about the
maturity level of the

Level 1a:
Expressing ideas

 109

knowledge item Level 1b:
Appropriating

Level 2:
Distributing in
communities

Level 3:
Formalizing

Level 4:
Ad-hoc training

Level 5:
Standardizing

110

Table 20 presents detailed information about the meta-metadata tag. This tag groups information about
the metadata instance itself (rather than the knowledge item that the metadata instance describes).

Table 20: Knowledge Item Meta-Data – Meta-Metadata Tag

Meta-Metadata Tag

Nr Name Description Value space Datatype Example

3.1 Identifier A globally unique label
that identifies this
metadata record

3.1.1 Catalogue Name of the
identification scheme
for this entry.

3.1.2 Entry Value of the identifier
within the
identification scheme.

3.2 Contribute Those entities that have
affected the state of this
metadata instance
during its lifecycle.

3.2.1 Role Kind of contribution creator

validator

3.2.2 Entity The identification of
and information about
entities.

3.2.3 Date Date of the contribution

3.3 Metadata
Schema

The name and version
of the authoritative
specification used to
create this metadata
instance.

 “LOMv1.0”

3.4 Language Language of this
metadata instance.

 111

Table 21 presents detailed information about the technical tag. This tag groups technical requirements and
technical characteristics of the knowledge item.

Table 21: Knowledge Item Meta-Data - Technical Tag

Technical Tag

Nr Name Description Value space Datatype Example

4.1 Format Technical datatype of
the knowledge item

MIME types “video/mpeg”

“text/html”

4.2 Size The size of the digital
knowledge item in
bytes.

4.3 Location A string that is used
to access this
knowledge item.

4.4 Requirement The technical
capabilities necessary
for using this
knowledge item.

4.4.1 OrComposite Grouping of multiple
requirements. The
composite
requirement is
satisfied when one of
the component
requirements is
satisfied.

4.4.1.1 Type The technology
required to use this
knowledge item, e.g.
hardware, software,
network, etc.

operating
system

browser

4.4.1.2 Name Name of the required
technology to use this
learning object

 “ms-windows”

“firefox”

4.4.1.3 Minimum
version

Lowest possible
version of the
required technology
to use this knowledge
item.

 “4.2”

4.4.1.4 Maximum
version

Highest possible
version of the
required technology
to use this knowledge
item

 “6.0”

4.5 Installation
remarks

Description of how to
install this
knowledge item

4.6 Other Platform Information about “sound card”

112

Requirements other software and
hardware
requirements

4.7 Duration Time a knowledge
item takes when
played at intended
speed.

Table 22 presents information about the rights tag. This tag groups the intellectual property rights and
conditions of use for the knowledge item.

Table 22: Knowledge Item Meta-Data - Rights Tag

Rights Tag

Nr Name Description Value space Datatype Example

5.1 Cost Whether the use of this
knowledge item
requires payment

5.2 Copyright and
Other
Restrictions

Whether copyright or
other restrictions apply
to the use of this
learning object.

5.3 Description Comments on the
conditions of use of this
knowledge item

Table 23 presents information about the relation tag. This tag groups features that define the relationship
between the knowledge item and other related knowledge items.

Table 23: Knowledge Item Meta-Data - Relation Tag

Relation Tag

Nr Name Description Value space Datatype Example

6.1 Kind Nature of the
relationship between
this knowledge item
and the target
knowledge item.

Based on
Dublin Core:

is part of

has part

is version of

…

6.2 Resource The target knowledge
item that this
relationship references

6.2.1 Identifier A globally unique label
that identifies the target
knowledge item

6.2.1.1 Catalogue The name of the
identification for this
entry.

 “URI”

 113

6.2.1.2 Entry The value of the
identifier within the
identification that
designates or identifies
the target learning
object.

6.2.2 Description Description of the
target knowledge item

Table 24 presents information about the annotation tag. This tag provides comments on the use of the
knowledge item and provides information on when and who created the comments. The rating has been
included for MATURE to enable the rating of knowledge items with predefined values.

Table 24: Knowledge Item Meta-Data - Annotation Tag

Annotation Tag

Nr Name Description Value space Datatype Example

7.1 Entity Entity (e.g. person,
organization) that
created this annotation

7.2 Date Date this annotation was
created

7.3 Description The content of this
annotation.

7.4 Rating Rating of this
knowledge item

114

Table 25 presents information about the classification tag. This tag describes this knowledge item in
relation to a particular classification system.

Table 25: Knowledge Item Meta-Data - Classification Tag

Classification Tag

Nr Name Description Value space Datatype Example

8.1 Purpose The purpose of
classifying the
knowledge item

Discipline

Idea

Prerequisite

Educational
objective

Accessibility

Restrictions

Educational
level

Skill level

Security level

Competency

8.2 Source The name of the
classification system.

8.3 Taxon A particular term
within a taxonomy. A
taxon is a node that has
a defined label or term.

8.3.1 Id The identifier of the
taxon, such as a
number or letter
combination provided
by the source of the
taxonomy.

8.3.2 Entry The textual label of the
taxon

8.4 Description Description of the
knowledge item
relative to the
classification purpose.

8.5 Keyword Keywords and phrases
descriptive of the
learning object relative
to the stated
classification purpose.

	1 Executive Summary
	2 Introduction
	2.1 Introduction to this Deliverable
	2.2 Integration Philosophy
	2.3 Structure of this Deliverable

	3 Conceptual Background of the System Architecture
	3.1 MATURE Specific Concepts
	3.1.1 Process Orientation
	3.1.2 Model Orientation
	3.1.3 Knowledge Management vs. Knowledge Work

	3.2 State of the Art Concepts
	3.2.1 Service Orientation and Virtualisation
	3.2.1.1 Service Oriented Architecture
	3.2.1.2 Web-Services
	3.2.1.3 Enterprise Service Bus
	3.2.1.4 Virtualisation and Virtual Organisations

	3.2.2 Semantics
	3.2.2.1 Semantic Service Description and Discovery

	3.2.3 Web 2.0
	3.2.3.1 AJAX
	3.2.3.2 Widgets
	3.2.3.3 Mashups

	3.2.4 Security and Trust

	4 MATURE Architecture Overview
	4.1 Bottom-Up View on the MATURE System
	4.1.1 Introduction to the Bottom-Up Approach – The Rapid Prototyping Approach
	4.1.2 Service Collection
	4.1.3 Integration Scenario

	4.2 Top-Down View on the MATURE System
	4.2.1 Introduction to the Top-Down Approach – The Architecture View Model Approach
	4.2.2 Logical View on the MATURE Architecture
	4.2.3 Process View on the MATURE Architecture
	4.2.3.1 Design Time
	4.2.3.2 Execution Time
	4.2.3.3 Evaluation/Administration

	4.2.4 Development View on the MATURE Architecture
	4.2.5 Physical View on the MATURE Architecture
	4.2.6 Scenario View on the MATURE Architecture
	4.2.6.1 Design Time Scenarios
	4.2.6.2 Execution Time Scenarios
	4.2.6.3 Evaluation and Administration Scenarios

	5 Knowledge Bus as Integration Tool
	5.1 Knowledge Bus Integration Layer
	5.1.1 Conceptual View on the Knowledge Bus Integration Layer
	5.1.1.1 Knowledge Modelling
	5.1.1.2 Knowledge Bus Ontologies

	5.1.2 Implementation View on the Knowledge Bus Integration Layer

	5.2 Knowledge Bus Infrastructure Layer
	5.2.1 Conceptual View on the Knowledge Bus Infrastructure Layer
	5.2.2 Implementation View on the Knowledge Bus Infrastructure Layer
	5.2.2.1 Enterprise Service Bus
	5.2.2.2 Adapter
	5.2.2.3 Semantic Service Registry
	5.2.2.4 Semantic Service Discovery
	5.2.2.5 Workflow Management
	5.2.2.6 Meta-Data Management

	6 Summary and Outlook
	Annex B Service Fact Sheet

